Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Imaging nanophotonic modes of microresonators using a focused ion beam

Abstract

Optical microresonators have proven powerful in a wide range of applications1, including cavity quantum electrodynamics2,3,4, biosensing5, microfludics6, cavity optomechanics7,8,9 and optical frequency combs10. Their performance depends critically on the exact distribution of optical energy, confined and shaped by the nanoscale device geometry. Near-field optical probes11 can image this distribution, but the physical probe necessarily perturbs the near field, which is particularly problematic for sensitive high-quality-factor resonances12,13. We present a new approach to mapping nanophotonic modes that uses a controllably small and local optomechanical perturbation introduced by a focused lithium ion beam14. An ion beam (radius of ≈50 nm) induces a picometre-scale deformation of the resonator surface, which we detect through shifts in the optical resonance wavelengths. We map five modes of a silicon microdisk resonator (Q ≥ 20,000) with high spatial and spectral resolution. Our technique also enables in situ observation of ion implantation damage and relaxation dynamics in a silicon lattice15,16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the measurement.
Figure 2: Optical transmission through the microdisk cavity.
Figure 3: Comparisons of radial scan measurements and simulations.

Similar content being viewed by others

References

  1. Ilchenko, V. S. & Matsko, A. B. Optical resonators with whispering-gallery modes—Part II: applications. IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).

    Article  ADS  Google Scholar 

  2. Raimond, J., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  3. Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: coherence in context. Science 298, 1372–1377 (2002).

    Article  ADS  Google Scholar 

  4. Srinivasan, K. & Painter, O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature 450, 862–865 (2007).

    Article  ADS  Google Scholar 

  5. Vollmer, F. & Arnold, S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nature Methods 5, 591–596 (2008).

    Article  Google Scholar 

  6. Monat, C., Domachuk, P. & Eggleton, B. J. Integrated optofluidics: a new river of light. Nature Photon. 1, 106–114 (2007).

    Article  ADS  Google Scholar 

  7. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  ADS  Google Scholar 

  8. Srinivasan, K., Miao, H., Rakher, M. T., Davanço, M. & Aksyuk, V. Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator. Nano Lett. 11, 791–797 (2011).

    Article  ADS  Google Scholar 

  9. Eichenfield, M., Camacho, R., Chan, J., Vahala, K. J. & Painter, O. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009).

    Article  ADS  Google Scholar 

  10. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  11. Rotenberg, N. & Kuipers, L. Mapping nanoscale light fields. Nature Photon. 8, 919–926 (2014).

    Article  ADS  Google Scholar 

  12. Götzinger, S., Demmerer, S., Benson, O. & Sandoghdar, V. Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe. J. Microsc. 202, 117–121 (2001).

    Article  MathSciNet  Google Scholar 

  13. Mujumdar, S. et al. Near-field imaging and frequency tuning of a high-Q photonic crystal membrane microcavity. Opt. Express 15, 17214–17220 (2007).

    Article  ADS  Google Scholar 

  14. Twedt, K. A., Chen, L. & McClelland, J. J. Scanning ion microscopy with low energy lithium ions. Ultramicroscopy 142, 24–31 (2014).

    Article  Google Scholar 

  15. Morehead, F. F. & Crowder, B. L. A model for the formation of amorphous Si by ion bombardment. Radiat. Eff. 6, 27–32 (1970).

    Article  ADS  Google Scholar 

  16. Myers, M., Charnvanichborikarn, S., Shao, L. & Kucheyev, S. Pulsed ion beam measurement of the time constant of dynamic annealing in Si. Phys. Rev. Lett. 109, 095502 (2012).

    Article  ADS  Google Scholar 

  17. Thompson, J. D. et al. Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013).

    Article  ADS  Google Scholar 

  18. Knight, J. C. et al. Mapping whispering-gallery modes in microspheres with a near-field probe. Opt. Lett. 20, 1515 (1995).

    Article  ADS  Google Scholar 

  19. Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of light. Nature Mater. 11, 781–787 (2012).

    Article  ADS  Google Scholar 

  20. Coenen, T., van de Groep, J. & Polman, A. Resonant modes of single silicon nanocavities excited by electron irradiation. ACS Nano 7, 1689–1698 (2013).

    Article  Google Scholar 

  21. Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nature Phys. 3, 348–353 (2007).

    Article  ADS  Google Scholar 

  22. García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article  ADS  Google Scholar 

  23. Garcia de Abajo, F. J. & Kociak, M. Electron energy-gain spectroscopy. New J. Phys. 10, 073035 (2008).

    Article  ADS  Google Scholar 

  24. Le Thomas, N. et al. Imaging of high-Q cavity optical modes by electron energy-loss microscopy. Phys. Rev. B 87, 155314 (2013).

    Article  ADS  Google Scholar 

  25. Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    Article  ADS  Google Scholar 

  26. Yurtsever, A., van der Veen, R. M. & Zewail, A. H. Subparticle ultrafast spectrum imaging in 4D electron microscopy. Science 335, 59–64 (2012).

    Article  ADS  Google Scholar 

  27. Johnson, S. G. et al. Perturbation theory for Maxwell's equations with shifting material boundaries. Phys. Rev. E 65, 066611 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  28. Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).

    Article  ADS  Google Scholar 

  29. Hennessy, K., Högerle, C., Hu, E., Badolato, A. & Imamoğlu, A. Tuning photonic nanocavities by atomic force microscope nano-oxidation. Appl. Phys. Lett. 89, 041118 (2006).

    Article  ADS  Google Scholar 

  30. Béland, L. K. & Mousseau, N. Long-time relaxation of ion-bombarded silicon studied with the kinetic activation–relaxation technique: microscopic description of slow aging in a disordered system. Phys. Rev. B 88, 214201 (2013).

    Article  ADS  Google Scholar 

  31. Goldberg, R. D., Williams, J. S. & Elliman, R. G. Amorphization of silicon by elevated temperature ion irradiation. Nucl. Instrum. Methods B 106, 242–247 (1995).

    Article  ADS  Google Scholar 

  32. Knuffman, B., Steele, A. V., Orloff, J. & McClelland, J. J. Nanoscale focused ion beam from laser-cooled lithium atoms. New J. Phys. 13, 103035 (2011).

    Article  ADS  Google Scholar 

  33. Ziegler, J., Biersack, J. & Ziegler, M. SRIM—The Stopping and Range of Ions in Matter (SRIM Co., 2008); www.srim.org.

    Google Scholar 

Download references

Acknowledgements

The authors thank N. Zhitenev for proposing the initial experiments that led to this work, and K. Dill for assistance preparing the image in Fig 1b. K.A.T. and J.Z. acknowledge support under the Cooperative Research Agreement between the University of Maryland and the National Institute of Standards and Technology Center for Nanoscale Science and Technology, award no. 70NANB10H193, through the University of Maryland.

Author information

Authors and Affiliations

Authors

Contributions

K.A.T., J.Z., J.J.M. and V.A.A. designed the experiments. J.Z. and V.A.A. fabricated and characterized the microdisk. K.A.T. and J.J.M. operated the lithium ion beam instrument. K.A.T. and J.Z. analysed the data and wrote the draft manuscript. M.D. and K.S. performed the optical modelling and mode perturbation calculations. All authors contributed to interpreting the data and editing the manuscript.

Corresponding author

Correspondence to Vladimir A. Aksyuk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 939 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Twedt, K., Zou, J., Davanco, M. et al. Imaging nanophotonic modes of microresonators using a focused ion beam. Nature Photon 10, 35–39 (2016). https://doi.org/10.1038/nphoton.2015.248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.248

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing