Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrasensitive force detection with a nanotube mechanical resonator

Abstract

Since the advent of atomic force microscopy1, mechanical resonators have been used to study a wide variety of phenomena, including the dynamics of individual electron spins2, persistent currents in normal metal rings3 and the Casimir force4,5. Key to these experiments is the ability to measure weak forces. Here, we report on force sensing experiments with a sensitivity of 12 zN Hz−1/2 at a temperature of 1.2 K using a resonator made of a carbon nanotube. An ultrasensitive method based on cross-correlated electrical noise measurements, in combination with parametric downconversion, is used to detect the low-amplitude vibrations of the nanotube induced by weak forces. The force sensitivity is quantified by applying a known capacitive force. This detection method also allows us to measure the Brownian vibrations of the nanotube down to cryogenic temperatures. Force sensing with nanotube resonators offers new opportunities for detecting and manipulating individual nuclear spins as well as for magnetometry measurements.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanotube resonator with low spring constant.
Figure 2: Measuring thermal vibrations.
Figure 3: Electron–vibration coupling in the Coulomb blockade regime.
Figure 4: Force sensing experiment.

Similar content being viewed by others

References

  1. Binnig, G., Quate, C. F. & Gerber, Ch. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  2. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  CAS  Google Scholar 

  3. Bleszynski-Jayich, A. C. et al. Persistent currents in normal metal rings. Science 326, 272–275 (2009).

    Article  CAS  Google Scholar 

  4. Mohideen, U. & Roy, A. Precision measurement of the Casimir force from 0.1 to 0.9 µm. Phys. Rev. Lett. 81, 4549–4552 (1998).

    Article  CAS  Google Scholar 

  5. Chan, H. B., Aksyuk, V. A., Kleiman, R. N., Bishop, D. J. & Capasso, F. Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science 291, 1941–1944 (2001).

    Article  CAS  Google Scholar 

  6. Stowe, T. D. et al. Attonewton force detection using ultrathin silicon cantilevers. Appl. Phys. Lett. 71, 288–290 (1997).

    Article  CAS  Google Scholar 

  7. Mamin, H. J. & Rugar, D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 79, 3358–3360 (2001).

    Article  CAS  Google Scholar 

  8. Tao, Y., Boss, J. M., Moores, B. A. & Degen, C. L. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Preprint at http://xxx.lanl.gov/abs/1212.1347 (2012).

  9. Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Appl. Phys. Lett. 102, 151910 (2013).

    Article  Google Scholar 

  10. Gavartin, E., Verlot, P. & Kippenberg, T. J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nature Nanotech. 7, 509–514 (2012).

    Article  CAS  Google Scholar 

  11. Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2009).

    Article  Google Scholar 

  12. Li, T., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. 7, 527–530 (2011).

    Article  CAS  Google Scholar 

  13. Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

    Article  Google Scholar 

  14. Reulet, B. et al. Acoustoelectric effects in carbon nanotubes. Phys. Rev. Lett. 85, 2829–2832 (2000).

    Article  CAS  Google Scholar 

  15. Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    Article  CAS  Google Scholar 

  16. Lassagne, B., Tarakanov, Y., Kinaret, J., Garcia-Sanchez, D. & Bachtold, A. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325, 1107–1110 (2009).

    Article  CAS  Google Scholar 

  17. Steele, G. A. et al. Strong coupling between single-electron tunneling and nanomechanical motion. Science 325, 1103–1107 (2009).

    Article  CAS  Google Scholar 

  18. Eichler, A., Moser, J., Chaste, J., Zdrojek, M., Wilson-Rae, I. & Bachtold, A. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nature Nanotech. 6, 339–342 (2011).

    Article  CAS  Google Scholar 

  19. Hüttel, A. K. et al. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9, 2547–2552 (2009).

    Article  Google Scholar 

  20. Nichol, J. M., Hemesath, E. R., Lauhon, L. J. & Budakian, R. Nanomechanical detection of nuclear magnetic resonance using a silicon nanowire oscillator. Phys. Rev. B 85, 054414 (2012).

    Article  Google Scholar 

  21. Stapfner, S. et al. Cavity-enhanced optical detection of carbon nanotube Brownian motion. Appl. Phys. Lett. 102, 151910 (2013).

    Article  Google Scholar 

  22. Chaste, J., Sledzinska, M., Zdrojek, M., Moser, J. & Bachtold, A. High-frequency nanotube mechanical resonators. Appl. Phys. Lett. 99, 213502 (2011).

    Article  Google Scholar 

  23. Gouttenoire, V. et al. Digital and FM demodulation of a doubly clamped single-walled carbon-nanotube oscillator: towards a nanotube cell phone. Small 6, 1060–1065 (2010).

    Article  CAS  Google Scholar 

  24. Glattli, D. C., Jacques, P., Kumar, A., Pari, P. & Saminadayar, L. A noise detection scheme with 10 mK noise temperature resolution for semiconductor single electron tunneling devices. J. Appl. Phys. 81, 7350–7356 (1997).

    Article  CAS  Google Scholar 

  25. Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997).

    Article  CAS  Google Scholar 

  26. Henny, M., Oberholzer, S., Strunk, C. & Schönenberger, C. 1/3-shot-noise suppression in diffusive nanowires. Phys. Rev. B 59, 2871–2880 (1999).

    Article  CAS  Google Scholar 

  27. Ganzhorn, M. & Wernsdorfer, W. Dynamics and dissipation induced by single-electron tunneling in carbon nanotube nanoelectromechanical systems. Phys. Rev. Lett. 108, 175502 (2012).

    Article  Google Scholar 

  28. Cleland, A. N. & Roukes, M. L. M. Noise processes in nanomechanical resonators. J. Appl. Phys. 92, 2758–2769 (2002).

    Article  CAS  Google Scholar 

  29. Maizelis, Z. A., Roukes, M. L. & Dykman, M. I. Detecting and characterizing frequency fluctuations of vibrational modes. Phys. Rev. B 84, 144301 (2011).

    Article  Google Scholar 

  30. Poggio, M. & Degen, C. L. Force-detected nuclear magnetic resonance: recent advances and future challenges. Nanotechnology 21, 342001 (2010).

    Article  CAS  Google Scholar 

  31. Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Degen, C. Glattli, C. Schönenberger, J. Gabelli and T. Kontos for discussions. We acknowledge support from the European Union through the RODIN-FP7 project, the ERC-carbonNEMS project and a Marie Curie grant (271938), the Spanish state (FIS2009-11284), the Catalan government (AGAUR, SGR) and the US Army Research Office.

Author information

Authors and Affiliations

Authors

Contributions

J.M. fabricated the device, developed the experimental set-up, and carried out the measurements. J.G. and A.E. provided support with the experimental set-up. J.G. participated in the measurements. J.G. and J.M. analysed the data. M.J.E. grew the nanotubes. D.E.L. and M.I.D. provided support with the theory and wrote the theoretical part of the Supplementary Information. J.M. and A.B. wrote the manuscript with critical comments from J.G. and M.I.D. A.B. conceived the experiment and supervised the work.

Corresponding author

Correspondence to A. Bachtold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 463 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, J., Güttinger, J., Eichler, A. et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nature Nanotech 8, 493–496 (2013). https://doi.org/10.1038/nnano.2013.97

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.97

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing