Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Switching of a coupled spin pair in a single-molecule junction

Abstract

Single-molecule spintronics investigates electron transport through magnetic molecules that have an internal spin degree of freedom1. To understand and control these individual molecules it is important to read their spin state2. For unpaired spins, the Kondo effect has been observed3,4,5,6,7,8 as a low-temperature anomaly at small voltages. Here, we show that a coupled spin pair in a single magnetic molecule can be detected9,10 and that a bias voltage can be used to switch between two states of the molecule. In particular, we use the mechanically controlled break-junction technique11 to measure electronic transport through a single-molecule junction containing two coupled spin centres that are confined on two Co2+ ions. Spin–orbit configuration interaction methods are used to calculate the combined spin system, where the ground state is found to be a pseudo-singlet and the first excitations behave as a pseudo-triplet. Experimentally, these states can be assigned to the absence and occurrence of a Kondo-like zero-bias anomaly in the low-temperature conductance data, respectively. By applying finite bias, we can repeatedly switch between the pseudo-singlet state and the pseudo-triplet state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coupled spin pair in a break junction.
Figure 2: Molecular junctions of type I, with Kondo-like behaviour.
Figure 3: Magnetic-field dependence of the ZBA for two different samples.
Figure 4: I–V characteristics recorded at low temperatures and the corresponding differential conductance obtained by numerical differentiation.

Similar content being viewed by others

References

  1. Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 40, 3336–3355 (2011).

    Article  CAS  Google Scholar 

  2. Schmaus, S. et al. Giant magnetoresistance through a single molecule. Nature Nanotech. 6, 185–189 (2011).

    Article  CAS  Google Scholar 

  3. Iancu, V., Deshpande, A. & Hla, S-W. Manipulation of the Kondo effect via two-dimensional molecular assembly. Phys. Rev. Lett. 97, 266603 (2006).

    Article  Google Scholar 

  4. Parks, J. J. et al. Tuning the Kondo effect with a mechanically controllable break junction. Phys. Rev. Lett. 99, 026601 (2007).

    Article  CAS  Google Scholar 

  5. Osorio, E. A. et al. Electrical manipulation of spin states in a single electrostatically gated transition-metal complex. Nano Lett. 10, 105–110 (2010).

    Article  CAS  Google Scholar 

  6. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  CAS  Google Scholar 

  7. Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    Article  CAS  Google Scholar 

  8. Meir, Y., Wingreen, N. S. & Lee, P. A. Low-temperature transport through a quantum dot: the Anderson model out of equilibrium. Phys. Rev. Lett. 70, 2601–2604 (1993).

    Article  CAS  Google Scholar 

  9. Baadji, N. et al. Electrostatic spin crossover effect in polar magnetic molecules. Nature Mater. 8, 813–817 (2009).

    Article  CAS  Google Scholar 

  10. Lehmann, J., Gaita-Arino, A., Coronado, E. & Loss, D. Spin qubits with electrically gated polyoxometalate molecules. Nature Nanotech. 2, 312–315 (2007).

    Article  CAS  Google Scholar 

  11. Reichert, J. et al. Driving current through single organic molecules. Phys. Rev. Lett. 88, 176804 (2002).

    Article  CAS  Google Scholar 

  12. Palii, A., Tsukerblat, B., Clemente-Juan, J. M. & Coronado, E. Magnetic exchange between metal ions with unquenched orbital angular momenta: basic concepts and relevance to molecular magnetism. Int. Rev. Phys. Chem. 29, 135–230 (2010).

    Article  CAS  Google Scholar 

  13. Fink, K., Wang, C. & Staemmler, V. Superexchange and spin–orbit coupling in chlorine-bridged binuclear cobalt(II) complexes. Inorg. Chem. 38, 3847–3856 (1999).

    Article  CAS  Google Scholar 

  14. Staemmler, V. & Fink, K. An ab initio cluster study of the magnetic properties of the CoO(0 0 1) surface. Chem. Phys. 278, 79–87 (2002).

    Article  CAS  Google Scholar 

  15. Costi, T. A., Hewson, A. C. & Zlatić, V. Transport coefficients of the Anderson model via the numerical renormalization group. J. Phys. Condens. Matter 6, 2519–2558 (1994).

    Article  CAS  Google Scholar 

  16. Nagaoka, K., Jamneala, T., Grobis, M. & Crommie, M. F. Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 88, 077205 (2002).

    Article  CAS  Google Scholar 

  17. Parks, J. J. et al. Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science 328, 1370–1373 (2010).

    Article  CAS  Google Scholar 

  18. Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007).

    Article  CAS  Google Scholar 

  19. Costi, T. A. et al. Kondo decoherence: finding the right spin model for iron impurities in gold and silver. Phys. Rev. Lett. 102, 056802 (2009).

    Article  CAS  Google Scholar 

  20. Romeike, C., Wegewijs, M. R., Hofstetter, W. & Schoeller, H. Quantum-tunneling-induced Kondo effect in single molecular magnets. Phys. Rev. Lett. 96, 196601 (2006).

    Article  CAS  Google Scholar 

  21. Romeike, C., Wegewijs, M. R., Ruben, M., Wenzel, W. & Schöller, M. Charge switchable molecular magnet and spin blockade of tunneling. Phys. Rev. B 77, 064404 (2007).

    Article  Google Scholar 

  22. Secker, D. et al. Resonant vibrations, peak broadening, and noise in single-molecule contacts: the nature of the first conductance peak. Phys. Rev. Lett. 106, 136807 (2011).

    Article  Google Scholar 

  23. Ruben, M. et al. Charge transport through a Cardan-joint molecule. Small 4, 2229–2234 (2008).

    Article  CAS  Google Scholar 

  24. Elbing, M. et al. A single-molecule diode. Proc. Natl Acad. Sci. USA 102, 8815–8820 (2005).

    Article  CAS  Google Scholar 

  25. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    Article  CAS  Google Scholar 

  26. Meier, U. & Staemmler, V. An efficient first-order CASSCF method based on the renormalized Fock-operator technique. Theor. Chim. Acta. 76, 95–111 (1989).

    Article  CAS  Google Scholar 

  27. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the DFG under the framework of the SPP 1243 ‘Quantum transport on the molecular scale’ and the Transregio SFB TRR88 ‘3MET’. The authors thank R. Herchel for help in interpreting the magnetic bulk data, and H. Görls and G. Vaughan for X-ray structural analysis of ligand L. M. Fischer is thanked for measuring the elemental analysis. The authors also appreciate discussions with P. Müller.

Author information

Authors and Affiliations

Authors

Contributions

M.R. and H.B.W. conceived and designed the experiments. S.W., F.K. and S.B. performed the MCBJ experiments. Synthesis and full characterization of the chemicals were performed by R.C. (ligand L) and F.S. (complex 1). Quantum-chemical calculations were performed and analysed by T.B. and K.F. O.F. determined the single-crystal X-ray data of complex 1. S.W., F.K., S.B., F.S., T.B., K.F., M.R. and H.B.W. co-wrote the paper. All authors discussed and commented on the manuscript. Correspondence should be addressed to F.S. (synthesis), K.F. (theory) and H.B.W. (experiment).

Corresponding authors

Correspondence to Frank Schramm, Karin Fink or Heiko B. Weber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1489 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, S., Kisslinger, F., Ballmann, S. et al. Switching of a coupled spin pair in a single-molecule junction. Nature Nanotech 8, 575–579 (2013). https://doi.org/10.1038/nnano.2013.133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing