Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes

Abstract

Quantum dots defined in carbon nanotubes are a platform for both basic scientific studies1,2,3,4,5 and research into new device applications6. In particular, they have unique properties that make them attractive for studying the coherent properties of single-electron spins7,8,9,10,11. To perform such experiments it is necessary to confine a single electron in a quantum dot with highly tunable barriers1, but disorder has prevented tunable nanotube-based quantum-dot devices from reaching the single-electron regime2,3,4,5. Here, we use local gate voltages applied to an ultraclean suspended nanotube to confine a single electron in both a single quantum dot and, for the first time, in a tunable double quantum dot. This tunability is limited by a novel type of tunnelling that is analogous to the tunnelling in the Klein paradox of relativistic quantum mechanics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrating local gates with ultraclean carbon nanotubes.
Figure 2: Gate defined single-electron and single-hole quantum dots.
Figure 3: A tunable double quantum dot in the few-electron and few-hole regime.
Figure 4: Klein tunnelling in a single-electron double quantum dot.

Similar content being viewed by others

References

  1. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1266 (2007).

    Article  CAS  Google Scholar 

  2. Mason, N., Biercuk, M. J. & Marcus, C. M. Local gate control of a carbon nanotube double quantum dot. Science 303, 655–658 (2004).

    Article  CAS  Google Scholar 

  3. Sapmaz, S., Meyer, C., Beliczynski, P., Jarillo-Herrero, P. & Kouwenhoven, L. P. Excited state spectroscopy in carbon nanotube double quantum dots. Nano Lett. 6, 1350–1355 (2006).

    Article  CAS  Google Scholar 

  4. Jørgensen, H. I., Rasmussen, G. K., Hauptmann, J. R. & Lindelof, P. E. Single wall carbon nanotube double quantum dot. Appl. Phys. Lett. 89, 232113 (2006).

    Article  Google Scholar 

  5. Gra¨ber, M. R. et al. Molecular states in carbon nanotube double quantum dots. Phys. Rev. B 74, 075427 (2006).

    Article  Google Scholar 

  6. Loss, D. & Divincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  CAS  Google Scholar 

  7. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  8. Koppens, F. H. L. et al. Universal phase shift and nonexponential decay of driven single-spin oscillations. Phys. Rev. Lett. 99, 106803 (2007).

    Article  CAS  Google Scholar 

  9. Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).

    Article  CAS  Google Scholar 

  10. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  CAS  Google Scholar 

  11. Bulaev, D. V., Trauzettel, B. & Loss, D. Spin-orbit interaction and anomalous spin relaxation in carbon nanotube quantum dots. Phys. Rev. B 77, 235301 (2008).

    Article  Google Scholar 

  12. Fujisawa, T., Austing, D. G., Tokura, Y., Hirayama, Y. & Tarucha, S. Allowed and forbidden transitions in artīcial hydrogen and helium atoms. Nature 419, 278–281 (2002).

    Article  CAS  Google Scholar 

  13. Elzerman, J. M. et al. Single-shot read-out of an individual-electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  CAS  Google Scholar 

  14. Klein, O. Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Z. Phys. 53, 157–165 (1929).

    Article  CAS  Google Scholar 

  15. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).

    Article  CAS  Google Scholar 

  16. Trauzettel, B., Bulaev, D. V., Loss, D. & Burkard, G. Spin qubits in graphene quantum dots. Nature Phys. 3, 192–196 (2007).

    Article  CAS  Google Scholar 

  17. Jarillo-Herrero, P., Sapmaz, S., Dekker, C., Kouwenhoven, L. P. & van der Zant, H. S. Electron–hole symmetry in a semiconducting carbon nanotube quantum dot. Nature 429, 389–392 (2004).

    Article  CAS  Google Scholar 

  18. Minot, E. D., Yaish, Y., Sazonova, V. & Mceuen, P. L. Determination of electron orbital magnetic moments in carbon nanotubes. Nature 428, 536–539 (2004).

    Article  CAS  Google Scholar 

  19. Cao, J., Wang, Q. & Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nature Mater. 4, 745–749 (2005).

    Article  CAS  Google Scholar 

  20. Deshpande, V. V. & Bockrath, M. The one-dimensional Wigner crystal in carbon nanotubes. Nature Phys. 4, 314–318 (2008).

    Article  CAS  Google Scholar 

  21. van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002).

    Article  Google Scholar 

  22. De Franceschi, S. et al. Electron cotunneling in a semiconductor quantum dot. Phys. Rev. Lett. 86, 878–881 (2001).

    Article  CAS  Google Scholar 

  23. Zener, C. A theory of the electrical breakdown of solid dielectrics. Roy. Soc. Proc. 145, 523–529 (1934).

    Article  CAS  Google Scholar 

  24. Esaki, L. New phenomenon in narrow germanium p–n junctions. Phys. Rev. 109, 603–604 (1958).

    Article  CAS  Google Scholar 

  25. Stoof, T. H. & Nazarov, Y. Time-dependent resonant tunneling via two discrete states. Phys. Rev. B 53, 1050–1053 (1996).

    Article  CAS  Google Scholar 

  26. Fujisawa, T. et al. Spontaneous emission spectrum in double quantum dot devices. Science 282, 932–935 (1998).

    Article  CAS  Google Scholar 

  27. Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    Article  CAS  Google Scholar 

  28. Churchill, H. O. H. et al. Electron–nuclear interaction in 13C nanotube double quantum dots. Preprint at <http://arxiv.org/abs/0811.3236>.

  29. Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

    Article  CAS  Google Scholar 

  30. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge P.L. McEuen for the suggestion of using p–n junctions as tunable barriers, as well as D. Loss, T. Balder, I.T. Vink, R.N. Schouten, L.M.K. Vandersypen, and M.H.M. van Weert for useful discussions and suggestions. This research was supported by the Dutch Organization for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO), and the Japan Science and Technology Agency International Cooperative Research Project (JST-ICORP).

Author information

Authors and Affiliations

Authors

Contributions

G.A.S. was responsible for the experimental work. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to G. A. Steele.

Supplementary information

Supplementary information

Supplementary information (PDF 1681 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steele, G., Gotz, G. & Kouwenhoven, L. Tunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes. Nature Nanotech 4, 363–367 (2009). https://doi.org/10.1038/nnano.2009.71

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing