Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Engineered biological nanofactories trigger quorum sensing response in targeted bacteria

Abstract

Biological nanofactories, which are engineered to contain modules that can target, sense and synthesize molecules, can trigger communication between different bacterial populations. These communications influence biofilm formation1,2, virulence3,4, bioluminescence5,6 and many other bacterial functions7,8 in a process called quorum sensing9. Here, we show the assembly of a nanofactory that can trigger a bacterial quorum sensing response in the absence of native quorum molecules. The nanofactory comprises an antibody (for targeting) and a fusion protein that produces quorum molecules when bound to the targeted bacterium. Our nanofactory selectively targets the appropriate bacteria and triggers a quorum sensing response when added to two populations of bacteria. The nanofactories also trigger communication between two bacterial populations that are otherwise non-communicating. We envision the use of these nanofactories in generating new antimicrobial treatments that target the communication networks of bacteria rather than their viability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engineered biological nanofactories trigger a quorum sensing response in targeted bacteria.
Figure 2: Nanofactories effectively target bacteria in pure cultures and trigger their quorum sensing response.
Figure 3: Nanofactories demonstrate that bacteria trigger a quorum sensing response within a window of AI-2 concentrations.
Figure 4: Nanofactories selectively target a specific population in bacterial co-cultures.
Figure 5: Nanofactories selectively trigger a quorum sensing response in bacterial co-cultures.

Similar content being viewed by others

References

  1. Hardie, K. R. & Heurlier, K. Establishing bacterial communities by ‘word of mouth’: LuxS and autoinducer 2 in biofilm development. Nature Rev. Microbiol. 6, 635–643 (2008).

    Article  CAS  Google Scholar 

  2. Irie, Y. & Parsek, M. R. Quorum sensing and microbial biofilms. Curr. Top. Microbiol. Immunol. 322, 67–84 (2008).

    CAS  Google Scholar 

  3. Higgins, D. A. et al. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450, 883–886 (2007).

    Article  CAS  Google Scholar 

  4. Le Berre, R. et al. Quorum-sensing activity and related virulence factor expression in clinically pathogenic isolates of Pseudomonas aeruginosa. Clin. Microbiol. Infect. 14, 337–343 (2008).

    Article  CAS  Google Scholar 

  5. Chen, X. et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545–549 (2002).

    Article  CAS  Google Scholar 

  6. Waters, C. M. & Bassler, B. L. The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev. 20, 2754–2767 (2006).

    Article  CAS  Google Scholar 

  7. DeLisa, M. P. & Bentley, W. E. Bacterial autoinduction: looking outside the cell for new metabolic engineering targets. Microb. Cell Fact. 1, 5 (2002).

    Article  Google Scholar 

  8. Williamson, N. R., Fineran, P. C., Ogawa, W., Woodley, L. R. & Salmond, G. P. Integrated regulation involving quorum sensing, a two-component system, a GGDEF/EAL domain protein and a post-transcriptional regulator controls swarming and RhlA-dependent surfactant biosynthesis in Serratia. Environ. Microbiol. 10, 1202–1217 (2008).

    Article  CAS  Google Scholar 

  9. Fuqua, W. C., Winans, S. C. & Greenberg, E. P. Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275 (1994).

    Article  CAS  Google Scholar 

  10. Garcia, M. C. et al. Arachidonic acid stimulates cell adhesion through a novel p38 MAPK-RhoA signaling pathway that involves heat shock protein 27. J. Biol. Chem. 284, 20936–20945 (2009).

    Article  CAS  Google Scholar 

  11. Sundrud, M. S. et al. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science 324, 1334–1338 (2009).

    Article  CAS  Google Scholar 

  12. Hung, D. T., Shakhnovich, E. A., Pierson, E. & Mekalanos, J. J. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310, 670–674 (2005).

    Article  CAS  Google Scholar 

  13. Rasko, D. A. et al. Targeting QseC signaling and virulence for antibiotic development. Science 321, 1078–1080 (2008).

    Article  CAS  Google Scholar 

  14. LeDuc, P. R. et al. Towards an in vivo biologically inspired nanofactory. Nature Nanotech. 2, 3–7 (2007).

    Article  CAS  Google Scholar 

  15. Keasling, J. D. Synthetic biology for synthetic chemistry. ACS Chem. Biol. 3, 64–76 (2008).

    Article  CAS  Google Scholar 

  16. Chin, J. W. Modular approaches to expanding the functions of living matter. Nature Chem. Biol. 2, 304–311 (2006).

    Article  CAS  Google Scholar 

  17. Wu, L. Q. & Payne, G. F. Biofabrication: using biological materials and biocatalysts to construct nanostructured assemblies. Trends Biotechnol. 22, 593–599 (2004).

    Article  CAS  Google Scholar 

  18. Lowery, C. A., Dickerson, T. J. & Janda, K. D. Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chem. Soc. Rev. 37, 1337–1346 (2008).

    Article  CAS  Google Scholar 

  19. Vendeville, A., Winzer, K., Heurlier, K., Tang, C. M. & Hardie, K. R. Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nature Rev. Microbiol. 3, 383–396 (2005).

    Article  CAS  Google Scholar 

  20. Fernandes, R. & Bentley, W. E. AI-2 biosynthesis module in a magnetic nanofactory alters bacterial response via localized synthesis and delivery. Biotechnol. Bioeng. 102, 390–399 (2009).

    Article  CAS  Google Scholar 

  21. Wang, L., Hashimoto, Y., Tsao, C. Y., Valdes, J. J. & Bentley, W. E. Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli. J. Bacteriol. 187, 2066–2076 (2005).

    CAS  Google Scholar 

  22. Wu, C. F., Cha, H. J., Rao, G., Valdes, J. J. & Bentley, W. E. A green fluorescent protein fusion strategy for monitoring the expression, cellular location and separation of biologically active organophosphorus hydrolase. Appl. Microbiol. Biotechnol. 54, 78–83 (2000).

    Article  CAS  Google Scholar 

  23. Taga, M. E., Miller, S. T. & Bassler, B. L. Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Mol. Microbiol. 50, 1411–1427 (2003).

    Article  CAS  Google Scholar 

  24. Taga, M. E., Semmelhack, J. L. & Bassler, B. L. The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol. Microbiol. 42, 777–793 (2001).

    Article  CAS  Google Scholar 

  25. Xavier, K. B. & Bassler, B. L. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J. Bacteriol. 187, 238–248 (2005).

    CAS  Google Scholar 

  26. Duan, F. & March, J. C. Interrupting Vibrio cholerae infection of human epithelial cells with engineered commensal bacterial signaling. Biotechnol. Bioeng. 101, 128–134 (2008).

    Article  CAS  Google Scholar 

  27. Auger, S., Krin, E., Aymerich, S. & Gohar, M. Autoinducer 2 affects biofilm formation by Bacillus cereus. Appl. Environ. Microbiol. 72, 937–941 (2006).

    Article  CAS  Google Scholar 

  28. Frezza, M. et al. Ac2-DPD, the bis-(O)-acetylated derivative of 4,5-dihydroxy-2,3-pentanedione (DPD) is a convenient stable precursor of bacterial quorum sensing autoinducer AI-2. Bioorg. Med. Chem. Lett. 17, 1428–1431 (2007).

    Article  CAS  Google Scholar 

  29. Miller, J. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory Press, 1972).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank B.L. Bassler for generously providing S. typhimurium MET715, Helim Aranda-Espinoza for providing access to microscopy facilities and T.A Dunn for his help in conducting the flow cytometry studies. Funding for this work was provided in part by the Defense Threat Reduction Agency (DTRA), the National Science Foundation and the R.W. Deutsch Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.F., V.R., H.- C.W. and W.E.B. all planned and designed the experiments. R.F., V.R. and H.-C.W. performed the experiments. R.F. and W.E.B. wrote the manuscript.

Corresponding author

Correspondence to William E. Bentley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 653 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, R., Roy, V., Wu, HC. et al. Engineered biological nanofactories trigger quorum sensing response in targeted bacteria. Nature Nanotech 5, 213–217 (2010). https://doi.org/10.1038/nnano.2009.457

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.457

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research