Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins

Abstract

The precise co-localization and stoichiometric expression of two different light-gated membrane proteins can vastly improve the physiological usefulness of optogenetics for the modulation of cell excitability with light. Here we present a gene-fusion strategy for the stable 1:1 expression of any two microbial rhodopsins in a single polypeptide chain. By joining the excitatory channelrhodopsin-2 with the inhibitory ion pumps halorhodopsin or bacteriorhodopsin, we demonstrate light-regulated quantitative bi-directional control of the membrane potential in HEK293 cells and neurons in vitro. We also present synergistic rhodopsin combinations of channelrhodopsin-2 with Volvox carteri channelrhodopsin-1 or slow channelrhodopsin-2 mutants, to achieve enhanced spectral or kinetic properties, respectively. Finally, we demonstrate the utility of our fusion strategy to determine ion-turnovers of as yet uncharacterized rhodopsins, exemplified for archaerhodopsin and CatCh, or to correct pump cycles, exemplified for halorhodopsin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of protein chimeras and functional evaluation of ChR2-EYFP-βbR, ChR2-EYFP-βNphR and hChR2(H134R)-mKate-hβbR.
Figure 2: Expression and functionality of bidirectional rhodopsin tandem proteins in cultured hippocampal neurons.
Figure 3: Properties of rhodopsin tandem variants measured in HEK293 cells and hippocampal neurons.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).

    Article  CAS  Google Scholar 

  2. Han, X. & Boyden, E. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE 2, e299 (2007).

    Article  Google Scholar 

  3. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    Article  CAS  Google Scholar 

  4. Douin, V. et al. Use and comparison of different internal ribosomal entry sites (IRES) in tricistronic retroviral vectors. BMC Biotechnol. 4, 16 (2004).

    Article  Google Scholar 

  5. Han, X., Qian, X., Stern, P., Chuong, A. & Boyden, E. Informational lesions: optical perturbation of spike timing and neural synchrony via microbial opsin gene fusions. Front. Mol. Neurosci. 2, 12 (2009).

    Article  Google Scholar 

  6. Tang, W. et al. Faithful expression of multiple proteins via 2A-peptide self-processing: a versatile and reliable method for manipulating brain circuits. J. Neurosci. 29, 8621–8629 (2009).

    Article  CAS  Google Scholar 

  7. de Felipe, P. et al. E unum pluribus: multiple proteins from a self-processing polyprotein. Trends Biotechnol. 24, 68–75 (2006).

    Article  CAS  Google Scholar 

  8. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2009).

    Article  Google Scholar 

  9. Geibel, S. et al. The voltage-dependent proton pumping in bacteriorhodopsin is characterized by optoelectic behavior. Biophys. J. 81, 2059–2068 (2001).

    Article  CAS  Google Scholar 

  10. Seki, A. et al. Heterologous expression of Pharaonis halorhodopsin in Xenopus laevis oocytes and electrophysiological characterization of its light-driven Cl pump activity. Biophys. J. 92, 2559–2569 (2007).

    Article  CAS  Google Scholar 

  11. Nagel, G., Möckel, B., Büldt, G. & Bamberg, E. Functional expression of bacteriorhodopsin in oocytes allows direct measurement of voltage dependence of light induced H+ pumping. FEBS Lett. 377, 263–266 (1995).

    Article  CAS  Google Scholar 

  12. Shcherbo, D. et al. Bright far-red fluorescent protein for whole-body imaging. Nat. Methods 4, 741–746 (2007).

    Article  CAS  Google Scholar 

  13. Feldbauer, K. et al. Channelrhodopsin-2 is a leaky proton pump. Proc. Natl. Acad. Sci. USA 106, 12317–12322 (2009).

    Article  CAS  Google Scholar 

  14. Zufferey, R. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bamann, C., Gueta, R., Kleinlogel, S., Nagel, G. & Bamberg, E. Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry 49, 267–278 (2010).

    Article  CAS  Google Scholar 

  16. Berndt, A., Yizhar, O., Gunaydin, L., Hegemann, P. & Deisseroth, K. Bi-stable neural state switches. Nat. Neurosci. 12, 229–234 (2009).

    Article  CAS  Google Scholar 

  17. Zhang, F. et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631–633 (2008).

    Article  Google Scholar 

  18. Chizhov, I. & Engelhard, M. Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis. Biophys. J. 81, 1600–1612 (2001).

    Article  CAS  Google Scholar 

  19. Lanyi, J. Halorhodopsin: A light-driven chloride ion pump. Annu. Rev. Biophys. Biophys. Chem. 15, 11–28 (1986).

    Article  CAS  Google Scholar 

  20. Dencher, N. & Wilms, M. Flash photometric experiments on the photochemical cycle of bacteriorhodopsin. Biophys. Struct. Mech. 1, 259–271 (1975).

    Article  CAS  Google Scholar 

  21. Chow, B. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    Article  CAS  Google Scholar 

  22. Kleinlogel, S. et al. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat. Neurosci. 14, 513–518 (2011).

    Article  CAS  Google Scholar 

  23. Yang, F., Moss, L. & Phillips, G. The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246–1251 (1996).

    Article  CAS  Google Scholar 

  24. Patterson, G. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002).

    Article  CAS  Google Scholar 

  25. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  26. Hackmann, C. et al. Static and time-resolved step-scan Fourier transform infrared investigations of the photoreaction of halorhodopsin from Natronobacterium pharaonis: consequences for models of the anion translocation mechanism. Biophys. J. 81, 394–406 (2001).

    Article  CAS  Google Scholar 

  27. Hegemann, P., Oesterhelt, D. & Bamberg, E. The transport activity of the light-driven chloride pump halorhodopsin is regulated by green and blue light. Biochim. Biophys. Acta 819, 195–205 (1985).

    Article  CAS  Google Scholar 

  28. Pletnev, S. et al. A crystallographic study of bright far-red fluorescent protein mKate reveals pH-induced cis-trans isomerization of the chromophore. J. Biol. Chem. 283, 28980–28987 (2008).

    Article  CAS  Google Scholar 

  29. Allocca, M. et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effecive gene delivery in mice. J. Clin. Invest. 118, 1955–1964 (2008).

    Article  CAS  Google Scholar 

  30. Büning, H. et al. Receptor targeting of adeno-associated virus vectors. Gene Ther. 10, 1142–1151 (2003).

    Article  Google Scholar 

  31. Allocca, M. et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J. Virol. 81, 11372–11380 (2007).

    Article  CAS  Google Scholar 

  32. Arenkiel, B. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205 (2007).

    Article  CAS  Google Scholar 

  33. Thyagarajan, S. et al. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J. Neurosci. 30, 8745 (2010).

    Article  CAS  Google Scholar 

  34. Zimmermann, D. et al. Effects on capacitance by overexpression of membrane proteins. Biochem. Biophys. Res. Commun. 369, 1022–1026 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Busskamp and B. Roska (Friedrich Miescher Institute for Biomedical Research, Basel) for the pAAV-LTR-EGFP plasmid and help with the rAAV construction, I. Bartnik for preparation of hippocampal neuron cultures, and H. Biehl and V. Eulenburg (Max Planck Institute for Brain Research, Frankfurt) for help with the antibody screening. The transgenic mouse expressing ChR2-EYFP was a gift from H. Wässle (Max Planck Institute for Brain Research, Frankfurt). The pAAV2-Rho-EGFP vector was a gift from A. Auricchio (Telethon Institute of Genetics and Medicine, Naples). The work was supported by the Deutsche Forschungsgemeinschaft Sonderforschungsbereich 807, Centre of Excellence Frankfurt Macromolecular Complexes, the German Federal Ministry of Education and Research (01GQ0815) and by the EU FP7 OptoNeuro Project (249867) to E.B. and by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

E.B., S.K. and P.G.W. conceived the molecular and electrophysiological experiments, and S.K., B.L. and U.T. carried them out. D.G. and C.B. performed the antibody screening. S.K., U.T. and C.B. designed and carried out the data analysis. S.K. and E.B. wrote the paper. E.S.B. supplied the Arch plasmid and contributed to writing.

Corresponding author

Correspondence to Ernst Bamberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Notes 1–5 (PDF 2135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinlogel, S., Terpitz, U., Legrum, B. et al. A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins. Nat Methods 8, 1083–1088 (2011). https://doi.org/10.1038/nmeth.1766

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1766

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research