Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Colloidal alloys with preassembled clusters and spheres

Abstract

Self-assembly is a powerful approach for constructing colloidal crystals, where spheres, rods or faceted particles can build up a myriad of structures. Nevertheless, many complex or low-coordination architectures, such as diamond, pyrochlore and other sought-after lattices, have eluded self-assembly. Here we introduce a new design principle based on preassembled components of the desired superstructure and programmed nearest-neighbour DNA-mediated interactions, which allows the formation of otherwise unattainable structures. We demonstrate the approach using preassembled colloidal tetrahedra and spheres, obtaining a class of colloidal superstructures, including cubic and tetragonal colloidal crystals, with no known atomic analogues, as well as percolating low-coordination diamond and pyrochlore sublattices never assembled before.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MgCu2 superlattice.
Figure 2: Phase behaviour of mixtures of DNA-coated colloidal spheres and tetrahedra.
Figure 3: Assemblies of colloidal tetrahedra and spheres.
Figure 4: Mixtures of tetrahedral clusters and spheres form a MgCu2 superlattice.
Figure 5: Bonding of a sphere in cages of tetrahedral clusters.

Similar content being viewed by others

References

  1. Pieranski, P. Colloidal crystals. Contemp. Phys. 24, 25–73 (1983).

    Article  CAS  Google Scholar 

  2. Bartlett, P., Ottewill, R. H. & Pusey, P. N. Superlattice formation in binary mixtures of hard-sphere colloids. Phys. Rev. Lett. 68, 3801–3804 (1992).

    Article  CAS  Google Scholar 

  3. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

    Article  CAS  Google Scholar 

  4. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  CAS  Google Scholar 

  5. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  CAS  Google Scholar 

  6. Ho, K. M., Chan, C. T. & Soukoulis, C. M. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990).

    Article  CAS  Google Scholar 

  7. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2008).

    Google Scholar 

  8. Maldovan, M. & Thomas, E. L. Diamond-structured photonic crystals. Nat. Mater. 3, 593–600 (2004).

    Article  CAS  Google Scholar 

  9. Garcia-Adeva, A. Band gap atlas for photonic crystals having the symmetry of the kagomé and pyrochlore lattices. New J. Phys. 8, 86 (2006).

    Article  Google Scholar 

  10. Ngo, T. T., Liddell, C. M., Ghebrebrhan, M. & Joannopoulos, J. D. Tetrastack: colloidal diamond-inspired structure with omnidirectional photonic band gap for low refractive index contrast. Appl. Phys. Lett. 88, 241920 (2006).

    Article  Google Scholar 

  11. Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2013).

    Article  Google Scholar 

  12. Stenull, O., Kane, C. L. & Lubensky, T. C. Topological phonons and Weyl lines in three dimensions. Phys. Rev. Lett. 117, 068001 (2016).

    Article  Google Scholar 

  13. Zadpoor, A. A. Mechanical meta-materials. Mater. Horiz. 3, 371–381 (2016).

    Article  CAS  Google Scholar 

  14. Zhang, Z., Keys, A. S., Chen, T. & Glotzer, S. C. Self-assembly of patchy particles into diamond structures through molecular mimicry. Langmuir 21, 11547–11551 (2005).

    Article  CAS  Google Scholar 

  15. Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

    Article  CAS  Google Scholar 

  16. Liu, W. et al. Diamond family of nanoparticle superlattices. Science 351, 582–586 (2016).

    Article  CAS  Google Scholar 

  17. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  18. Bishop, K. J. M., Chevalier, N. R. & Grzybowski, B. A. When and why like-sized, oppositely charged particles assemble into diamond-like crystals. J. Phys. Chem. Lett. 4, 1507–1511 (2013).

    Article  CAS  Google Scholar 

  19. Pearson, W. B. The Crystal Chemistry and Physics of Metals and Alloys (Wiley-Interscience, 1972).

    Google Scholar 

  20. Hynninen, A.-P., Thijssen, J. H. J., Vermolen, E. C. M., Dijkstra, M. & van Blaaderen, A. Self-assembly route for photonic crystals with a bandgap in the visible region. Nat. Mater. 6, 202–205 (2007).

    Article  CAS  Google Scholar 

  21. Yoshimura, S. & Hachisu, S. Order formation in binary-mixtures of monodisperse lattices .1. observation of ordered structures. Prog. Colloid Polym. Sci. 68, 59–70 (1983).

    Article  CAS  Google Scholar 

  22. Manoharan, V. N., Elsesser, M. T. & Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science 301, 483–487 (2003).

    Article  CAS  Google Scholar 

  23. Anderson, J. A., Lorenz, C. D. & Travesset, A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227, 5342–5359 (2008).

    Article  Google Scholar 

  24. Glaser, J. et al. Strong scaling of general-purpose molecular dynamics simulations on GPUs. Comput. Phys. Commun. 192, 97–107 (2015).

    Article  CAS  Google Scholar 

  25. Wang, Y. et al. Synthetic strategies toward DNA-coated colloids that crystallize. J. Am. Chem. Soc. 137, 10760–10766 (2015).

    Article  CAS  Google Scholar 

  26. Oh, J. S., Wang, Y., Pine, D. J. & Yi, G.-R. High-density PEO-b-DNA brushes on polymer particles for colloidal superstructures. Chem. Mater. 27, 8337–8344 (2015).

    Article  CAS  Google Scholar 

  27. Asakura, S. & Oosawa, F. On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22, 1255–1256 (1954).

    Article  CAS  Google Scholar 

  28. Tuinier, R., Rieger, J. & de Kruif, C. Depletion-induced phase separation in colloid–polymer mixtures. Adv. Colloid Interface Sci. 103, 1–31 (2003).

    Article  CAS  Google Scholar 

  29. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azidealkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  CAS  Google Scholar 

  30. Wang, Y. et al. Crystallization of DNA-coated colloids. Nat. Commun. 6, 7253 (2015).

    Article  CAS  Google Scholar 

  31. Kaplan, P. D., Rouke, J. L., Yodh, A. G. & Pine, D. J. Entropically driven surface phase separation in binary colloidal mixtures. Phys. Rev. Lett. 72, 582–585 (1994).

    Article  CAS  Google Scholar 

  32. van Blaaderen, A. Colloidal molecules and beyond. Science 301, 470–471 (2003).

    Article  CAS  Google Scholar 

  33. Smallenburg, F., Filion, L. & Sciortino, F. Erasing no-man’s land by thermodynamically stabilizing the liquid–liquid transition in tetrahedral particles. Nat. Phys. 10, 653–657 (2014).

    Article  CAS  Google Scholar 

  34. Jones, M. R., Macfarlane, R. J., Prigodich, A. E., Patel, P. C. & Mirkin, C. A. Nanoparticle shape anisotropy dictates the collective behavior of surface-bound ligands. J. Am. Chem. Soc. 133, 18865–18869 (2011).

    Article  CAS  Google Scholar 

  35. Song, P. et al. Patchy particle packing under electric fields. J. Am. Chem. Soc. 137, 3069–3075 (2015).

    Article  CAS  Google Scholar 

  36. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    Article  CAS  Google Scholar 

  37. Avvisati, G. & Dijkstra, M. Colloidal Laves phases as precursors of photonic crystals. (2016).

  38. Xia, Y., Yin, Y., Lu, Y. & McLellan, J. Template-assisted self-assembly of spherical colloids into complex and controllable structures. Adv. Funct. Mater. 13, 907–918 (2003).

    Article  CAS  Google Scholar 

  39. Rogers, W. B. & Manoharan, V. N. Programming colloidal phase transitions with DNA strand displacement. Science 347, 639–642 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Crocker for useful conversations, I.-S. Jo and T. Y. Park for help with figures, and X. Zheng for help with particle synthesis. We also thank J. Dshemuchadse for identification of the tetragonal crystal structure. This research was supported by the US Army Research Office under MURI Grant Award No. W911NF-10-1-0518. G.-R.Y. acknowledges support from the NRF (Korea) under award numbers 2010-0029409, 2014S1A2A2028608 and 2014R1A2A2A01006628.

Author information

Authors and Affiliations

Authors

Contributions

E.D., G.-R.Y. and D.J.P. conceived of the experimental and computational approach. E.D. performed the experiments and ran the simulations. M.H. synthesized the colloidal clusters. D.J.P. and E.D. wrote the paper with edits by G.-R.Y.

Corresponding authors

Correspondence to Gi-Ra Yi or David J. Pine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1105 kb)

Supplementary Information

Supplementary movie 1 (MOV 10017 kb)

Supplementary Information

Supplementary movie 2 (MOV 7345 kb)

Supplementary Information

Supplementary movie 3 (MOV 21126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducrot, É., He, M., Yi, GR. et al. Colloidal alloys with preassembled clusters and spheres. Nature Mater 16, 652–657 (2017). https://doi.org/10.1038/nmat4869

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4869

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing