Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles

Abstract

In nanotechnology, small-volume metals with large surface area are used as electrodes, catalysts, interconnects and antennae1,2,3,4. Their shape stability at room temperature has, however, been questioned. Using in situ high-resolution transmission electron microscopy, we find that Ag nanoparticles can be deformed like a liquid droplet but remain highly crystalline in the interior, with no sign of dislocation activity during deformation5,6. Surface-diffusion-mediated pseudoelastic deformation is evident at room temperature, which can be driven by either an external force or capillary-energy minimization. Atomistic simulations confirm that such highly unusual Coble pseudoelasticity can indeed happen for sub-10-nm Ag particles at room temperature and at timescales from seconds to months.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reversible pseudoelastic deformation of the Ag NC.
Figure 2: Atomic layer growth during compression.
Figure 3: Surface-energy-driven shape change.
Figure 4: Simulated shape evolution of Ag NCs by surface diffusion.
Figure 5: Arrhenius plots of the transition time for diffusion events on the (001)/(111) surfaces of Ag NCs.

Similar content being viewed by others

References

  1. Park, M. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nature Nanotech. 7, 803–809 (2012).

    Article  CAS  Google Scholar 

  2. Chen, J. Y., Lim, B., Lee, E. P. & Xia, Y. N. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4, 81–95 (2009).

    Article  Google Scholar 

  3. Liu, N., Tang, M. L., Hentschel, M., Giessen, H. & Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Mater. 10, 631–636 (2011).

    Article  CAS  Google Scholar 

  4. Muhlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  CAS  Google Scholar 

  5. Rodrigues, V., Fuhrer, T. & Ugarte, D. Signature of atomic structure in the quantum conductance of gold nanowires. Phys. Rev. Lett. 85, 4124–4127 (2000).

    Article  CAS  Google Scholar 

  6. Rodrigues, V. & Ugarte, D. Real-time imaging of atomistic process in one-atom-thick metal junctions. Phys. Rev. B 63, 073405 (2001).

    Article  Google Scholar 

  7. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    Article  CAS  Google Scholar 

  8. Yu, Q. et al. Strong crystal size effect on deformation twinning. Nature 463, 335–338 (2010).

    Article  CAS  Google Scholar 

  9. Brinckmann, S., Kim, J. Y. & Greer, J. R. Fundamental differences in mechanical behavior between two types of crystals at the nanoscale. Phys. Rev. Lett. 100, 155502 (2008).

    Article  Google Scholar 

  10. Iijima, S. & Ichihashi, T. Structural instability of ultrafine particles of metals. Phys. Rev. Lett. 56, 616–619 (1986).

    Article  CAS  Google Scholar 

  11. Wang, Z. W. & Palmer, R. E. Determination of the ground-state atomic structures of size-selected Au nanoclusters by electron-beam-induced transformation. Phys. Rev. Lett. 108, 245502 (2012).

    Article  CAS  Google Scholar 

  12. Mordehai, D., Rabkin, E. & Srolovitz, D. J. Pseudoelastic deformation during nanoscale adhesive contact formation. Phys. Rev. Lett. 107, 096101 (2011).

    Article  Google Scholar 

  13. Coble, R. L. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679–1682 (1963).

    Article  Google Scholar 

  14. Zheng, H. et al. Discrete plasticity in sub-10-nm-sized gold crystals. Nature Commun. 1, 144 (2010).

    Article  Google Scholar 

  15. Wang, Z. W. & Palmer, R. E. Mass spectrometry and dynamics of gold adatoms observed on the surface of size-selected Au nanoclusters. Nano Lett. 12, 91–95 (2012).

    Article  CAS  Google Scholar 

  16. Gleiter, H. Nanocrystalline materials. Prog. Mater. Sci. 33, 223–315 (1989).

    Article  CAS  Google Scholar 

  17. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    Article  CAS  Google Scholar 

  18. Combe, N., Jensen, P. & Pimpinelli, A. Changing shapes in the nanoworld. Phys. Rev. Lett. 85, 110–113 (2000).

    Article  CAS  Google Scholar 

  19. Mullins, W. W. & Rohrer, G. S. Nucleation barrier for volume-conserving shape changes of faceted crystals. J. Am. Ceram. Soc. 83, 214–216 (2000).

    Article  CAS  Google Scholar 

  20. Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    Article  CAS  Google Scholar 

  21. Kim, S. Y., Lee, I. H. & Jun, S. Transition-pathway models of atomic diffusion on fcc metal surfaces. I. Flat surfaces. Phys. Rev. B 76, 245407 (2007).

    Article  Google Scholar 

  22. Kim, S. Y., Lee, I. H. & Jun, S. Transition-pathway models of atomic diffusion on fcc metal surfaces. II. Stepped surfaces. Phys. Rev. B 76, 245408 (2007).

    Article  Google Scholar 

  23. Aminpour, M., Trushin, O. & Rahman, T. S. Effect of misfit dislocation on surface diffusion. Phys. Rev. B 84, 035455 (2011).

    Article  Google Scholar 

  24. Ala-Nissila, T., Ferrando, R. & Ying, S. C. Collective and single particle diffusion on surfaces. Adv. Phys. 51, 949–1078 (2002).

    Article  CAS  Google Scholar 

  25. Yildirim, H., Kara, A. & Rahman, T. S. Origin of quasi-constant pre-exponential factors for adatom diffusion on Cu and Ag surfaces. Phys. Rev. B 76, 165421 (2007).

    Article  Google Scholar 

  26. Yildirim, H. & Rahman, T. S. Diffusion barriers for Ag and Cu adatoms on the terraces and step edges on Cu(100) and Ag(100): An ab initio study. Phys. Rev. B 80, 235413 (2009).

    Article  Google Scholar 

  27. Wang, B. Y., Liu, M. X., Wang, Y. T. & Chen, X. S. Structures and energetics of silver and gold nanoparticles. J. Phys. Chem. C 115, 11374–11381 (2011).

    Article  CAS  Google Scholar 

  28. Marks, L. D. Experimental studies of small-particle structrures. Rep. Prog. Phys. 57, 603–649 (1994).

    Article  CAS  Google Scholar 

  29. Hara, S. & Li, J. Adaptive strain-boost hyperdynamics simulations of stress-driven atomic processes. Phys. Rev. B 82, 184114 (2010).

    Article  Google Scholar 

  30. Miron, R. A. & Fichthorn, K. A. Accelerated molecular dynamics with the bond-boost method. J. Chem. Phys. 119, 6210–6216 (2003).

    Article  CAS  Google Scholar 

  31. Strachan, D. R. et al. Clean electromigrated nanogaps imaged by transmission electron microscopy. Nano Lett. 6, 441–444 (2006).

    Article  CAS  Google Scholar 

  32. Couchman, P. R. & Jesser, W. A. Thermodynamic theory of size dependence of melting temperature in metals. Nature 269, 481–483 (1977).

    Article  CAS  Google Scholar 

  33. Lai, S. L., Carlsson, J. R. A. & Allen, L. H. Melting point depression of Al clusters generated during the early stages of film growth: Nanocalorimetry measurements. Appl. Phys. Lett. 72, 1098–1100 (1998).

    Article  CAS  Google Scholar 

  34. Bachels, T., Guntherodt, H. J. & Schafer, R. Melting of isolated tin nanoparticles. Phys. Rev. Lett. 85, 1250–1253 (2000).

    Article  CAS  Google Scholar 

  35. Asoro, M. A., Damiano, J. & Ferreira, P. J. Size effects on the melting temperature of silver nanoparticles: In-situ TEM observations. Microsc. Microanal. 15, 706–707 (2009).

    Article  Google Scholar 

  36. Lu, H. M., Li, P. Y., Cao, Z. H. & Meng, X. K. Size-, shape-, and dimensionality-dependent melting temperatures of nanocrystals. J. Phys. Chem. C 113, 7598–7602 (2009).

    Article  CAS  Google Scholar 

  37. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  38. Sheng, H. W., Kramer, M. J., Cadien, A., Fujita, T. & Chen, M. W. Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys. Rev. B 83, 134118 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China under grant Nos. 2011CB707601 and 2012CB619402, the National Natural Science Foundation of China under grant Nos. 61274114, 113279028, 51201032 and 51071044, the Key Grant Project of Chinese Ministry of Education under grant No. 311019, and the Natural Science Foundation of Jiangsu Province under grant Nos. BK2011592 and BK2012024. Y-C.L. thanks E. Bitzek (Friedrich-Alexander-Universität Erlangen-Nürnberg) and J. C. Huang (National Sun Yat-Sen University) for kind support. J.L. and Y-C.L. would like to acknowledge support from NSF DMR-1120901 and DMR-1240933. Computational time on the Extreme Science and Engineering Discovery Environment (XSEDE) under grants TG-DMR130038, TG-DMR140003 and TG-PHY140014 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

L.S., J.L. and Z.Z. proposed and supervised the project, J.S., L.H., T.X. and H.B. performed the experiments, and Y-C.L. performed the simulations. L.S., J.L., Z.Z. and S.X.M. analysed data and wrote the manuscript. All the authors participated in discussions of the research.

Corresponding authors

Correspondence to Litao Sun, Ze Zhang or Ju Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1324 kb)

Supplementary Information

Supplementary Movie S1 (GIF 1770 kb)

Supplementary Information

Supplementary Movie S2 (GIF 1267 kb)

Supplementary Information

Supplementary Movie S3 (GIF 990 kb)

Supplementary Information

Supplementary Movie S4 (GIF 2494 kb)

Supplementary Information

Supplementary Movie S5 (WMV 723 kb)

Supplementary Information

Supplementary Movie S6 (WMV 3622 kb)

Supplementary Information

Supplementary Movie S7 (WMV 3809 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., He, L., Lo, YC. et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nature Mater 13, 1007–1012 (2014). https://doi.org/10.1038/nmat4105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing