Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-atom devices

Quantum engineering

A series of breakthroughs is making the fabrication of single-atom devices possible. Their behaviour is controlled by the quantum state of single dopants, and they hold promise for applications such as quantum bits, magnetometers and memories.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-atom transistor.
Figure 2: Antiferromagnetic chain functioning as a bit.

References

  1. Feynman, R. There is Plenty of Room at the Bottom APS Meeting (1959).

    Google Scholar 

  2. Pierre, M. et al. Nature Nanotech. 5, 133–137 (2010).

    Article  CAS  Google Scholar 

  3. Kane, B. E. Nature 393, 133–137 (1998).

    Article  CAS  Google Scholar 

  4. Pla, J. J. et al. Nature 496, 334–338 (2013).

    Article  CAS  Google Scholar 

  5. Elzerman, J. M. et al. Nature 430, 431–435 (2004).

    Article  CAS  Google Scholar 

  6. Jamet, S., Boukari, H. & Besombes, L. Preprint at http://arXiv.org/abs/1302.3769 (2013).

  7. Balasubramanian, G. et al. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  8. Maletinsky, P. et al. Nature Nanotech. 7, 320–324 (2012).

    Article  CAS  Google Scholar 

  9. Bernien, H. et al. Nature 497, 86–90 (2013).

    CAS  Google Scholar 

  10. Khajetoorians, A. A. et al. Science 332, 1062–1064 (2011).

    Article  CAS  Google Scholar 

  11. Loth, S. et al. Science 355, 196–199 (2012).

    Article  Google Scholar 

  12. Koenraad, P. & Flatté, M. Nature Mater. 10, 91–100 (2011).

    Article  CAS  Google Scholar 

  13. Lansbergen, G. P. Nature Nanotech. 7, 209–210 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin Fernández Rossier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández Rossier, J. Quantum engineering. Nature Mater 12, 480–481 (2013). https://doi.org/10.1038/nmat3670

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3670

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing