Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A hybrid computational–experimental approach for automated crystal structure solution

Abstract

Crystal structure solution from diffraction experiments is one of the most fundamental tasks in materials science, chemistry, physics and geology. Unfortunately, numerous factors render this process labour intensive and error prone. Experimental conditions, such as high pressure1 or structural metastability2, often complicate characterization. Furthermore, many materials of great modern interest, such as batteries3 and hydrogen storage media4, contain light elements such as Li and H that only weakly scatter X-rays. Finally, structural refinements generally require significant human input and intuition, as they rely on good initial guesses for the target structure. To address these many challenges, we demonstrate a new hybrid approach, first-principles-assisted structure solution (FPASS), which combines experimental diffraction data, statistical symmetry information and first-principles-based algorithmic optimization to automatically solve crystal structures. We demonstrate the broad utility of FPASS to clarify four important crystal structure debates: the hydrogen storage candidates MgNH and NH3BH3; Li2O2, relevant to Li–air batteries; and high-pressure silane, SiH4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic comparison of three approaches for solving crystal structures: diffraction experiments, the present work’s FPASS, and purely predictive computation.
Figure 2: Results of the best FPASS run in each experimental candidate space group for MgNH.
Figure 3: A comparison of FPASS results for MgNH with those of crystal structure prediction methods.
Figure 4: FPASS results for 8- and 32-atom Li2O2 structures in the space group.
Figure 5: Performance of FPASS in a case for which DFT had been used to manually assist in a structure refinement of high-pressure ammonia borane25.

Similar content being viewed by others

References

  1. Eremets, M. I., Trojan, I. A., Medvedev, S. A., Tse, J. S. & Yao, Y. Superconductivity in hydrogen dominant materials: Silane. Science 319, 1506–1509 (2008).

    Article  CAS  Google Scholar 

  2. Huang, X. Y., Ackland, G. J. & Rabe, K. M. Crystal structures and shape-memory behaviour of NiTi. Nature Mater. 2, 307–311 (2003).

    Article  CAS  Google Scholar 

  3. Nishimura, S. et al. Experimental visualization of lithium diffusion in LixFePO4 . Nature Mater. 7, 707–711 (2008).

    Article  CAS  Google Scholar 

  4. Hauback, B. C., Brinks, H. W. & Fjellvag, H. Accurate structure of LiAlD4 studied by combined powder neutron and X-ray diffraction. J. Alloy Compd. 346, 184–189 (2002).

    Article  CAS  Google Scholar 

  5. Harris, K. D. M. & Cheung, E. Y. How to determine structures when single crystals cannot be grown: Opportunities for structure determination of molecular materials using powder diffraction data. Chem. Soc. Rev. 33, 526–538 (2004).

    Article  CAS  Google Scholar 

  6. Kariuki, B. M., Serrano-Gonzalez, H., Johnston, R. L. & Harris, K. D. M. The application of a genetic algorithm for solving crystal structures from powder diffraction data. Chem. Phys. Lett. 280, 189–195 (1997).

    Article  CAS  Google Scholar 

  7. Tremayne, M., Kariuki, B. M. & Harris, K. D. M. Structure determination of a complex organic solid from X-ray powder diffraction data by a generalized Monte Carlo method: The crystal structure of red fluorescein. Angew. Chem. Int. Ed. 36, 770–772 (1997).

    Article  CAS  Google Scholar 

  8. Favre-Nicolin, V. & Cerny, R. FOX, ‘free objects for crystallography’: A modular approach to ab initio structure determination from powder diffraction. J. Appl. Crystallogr. 35, 734–743 (2002).

    Article  CAS  Google Scholar 

  9. Gavezzotti, A. & Filippini, G. Computer prediction of organic crystal structures using partial X-ray diffraction data. J. Am. Chem. Soc. 118, 7153–7157 (1996).

    Article  CAS  Google Scholar 

  10. Abraham, N. L. & Probert, M. I. J. A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction. Phys. Rev. B 73, 224104 (2006).

    Article  Google Scholar 

  11. Glass, C. W., Oganov, A. R. & Hansen, N. USPEX—Evolutionary crystal structure prediction. Comput. Phys. Commun. 175, 713–720 (2006).

    Article  CAS  Google Scholar 

  12. Majzoub, E. H. & Ozolins, V. Prototype electrostatic ground state approach to predicting crystal structures of ionic compounds: Application to hydrogen storage materials. Phys. Rev. B 77, 104115 (2008).

    Article  Google Scholar 

  13. Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).

    Article  Google Scholar 

  14. Jacobs, H. & Juza, R. Darstellung und Eigenschaften von Magnesiumamid und -imid. Z. Anorg. Allg. Chem. 370, 254–261 (1969).

    Article  CAS  Google Scholar 

  15. Dolci, F. et al. Magnesium imide: Synthesis and structure determination of an unconventional alkaline earth imide from decomposition of magnesium amide. Inorg. Chem. 50, 1116–1122 (2011).

    Article  CAS  Google Scholar 

  16. Oganov, A. R. & Valle, M. How to quantify energy landscapes of solids. J. Chem. Phys. 130, 104504 (2009).

    Article  Google Scholar 

  17. Lonie, D. C. & Zurek, E. XTALOPT: An open-source evolutionary algorithm for crystal structure prediction. Comput. Phys. Commun. 182, 372–387 (2011).

    Article  CAS  Google Scholar 

  18. Fortes, A. D., Suard, E., Lemee-Cailleau, M. H., Pickard, C. J. & Needs, R. J. Crystal structure of ammonia monohydrate phase II. J. Am. Chem. Soc. 131, 13508–13515 (2009).

    Article  CAS  Google Scholar 

  19. Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium–air battery: Promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).

    Article  CAS  Google Scholar 

  20. Fehér, F., Vonwilucki, I. & Dost, G. Beiträge zur Kenntnis des Wasserstoffperoxyds und seiner Derivate, VII. Über die Kristallstruktur des Lithiumperoxyds, Li2O2 . Chem. Ber-Recl. 86, 1429–1437 (1953).

    Article  Google Scholar 

  21. Föppl, H. Die Kristallstrukturen der Alkaliperoxyde. Z. Anorg. Allg. Chem. 291, 12–50 (1957).

    Article  Google Scholar 

  22. Cota, L. G. & de la Mora, P. On the structure of lithium peroxide, Li2O2 . Acta Crystallogr. B 61, 133–136 (2005).

    Article  Google Scholar 

  23. Chan, M. K. Y. et al. Structure of lithium peroxide. J. Phys. Chem. Lett. 2, 2483–2486 (2011).

    Article  CAS  Google Scholar 

  24. Marder, T. B. Will we soon be fueling our automobiles with ammonia-borane? Angew. Chem. Int. Ed. 46, 8116–8118 (2007).

    Article  CAS  Google Scholar 

  25. Filinchuk, Y., Nevidomskyy, A. H., Chernyshov, D. & Dmitriev, V. High-pressure phase and transition phenomena in ammonia borane NH3BH3 from X-ray diffraction, Landau theory, and ab initio calculations. Phys. Rev. B 79, 214111 (2009).

    Article  Google Scholar 

  26. Kim, D. Y. et al. Crystal structure of the pressure-induced metallic phase of SiH4 from ab initio theory. Proc. Natl Acad. Sci. USA 105, 16454–16459 (2008).

    Article  CAS  Google Scholar 

  27. Degtyareva, O., Proctor, J. E., Guillaume, C. L., Gregoryanz, E. & Hanfland, M. Formation of transition metal hydrides at high pressures. Solid State Commun. 149, 1583–1586 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.M. was primarily supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. The work was further supported by DOE under Grant No. DE-FG02-07ER46433. The authors also gratefully acknowledge support from a Laboratory Directed Research and Development programme at Sandia National Laboratories, in the form of a Grand Challenge project entitled Reimagining Liquid Transportation Fuels: Sunshine to Petrol. B.M. would like to thank G. B. González Avilés, J. Emery, V. Ozoliņš and Y. Zhang for helpful conversations. B.M. is also indebted to A.U. Adler for lending his expertise to the creation of Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

C.W. and B.M. jointly conceived the work and analysed all results. B.M. designed the FPASS algorithm and carried out predictions. B.M. led the manuscript writing, with input from C.W.

Corresponding author

Correspondence to C. Wolverton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 749 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meredig, B., Wolverton, C. A hybrid computational–experimental approach for automated crystal structure solution. Nature Mater 12, 123–127 (2013). https://doi.org/10.1038/nmat3490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3490

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing