Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption

An Erratum to this article was published on 01 February 2005

Abstract

Period (Per) genes are involved in regulation of the circadian clock and are thought to modulate several brain functions. We demonstrate that Per2Brdm1 mutant mice, which have a deletion in the PAS domain of the Per2 protein, show alterations in the glutamatergic system. Lowered expression of the glutamate transporter Eaat1 is observed in these animals, leading to reduced uptake of glutamate by astrocytes. As a consequence, glutamate levels increase in the extracellular space of Per2Brdm1 mutant mouse brains. This is accompanied by increased alcohol intake in these animals. In humans, variations of the PER2 gene are associated with regulation of alcohol consumption. Acamprosate, a drug used to prevent craving and relapse in alcoholic patients is thought to act by dampening a hyper-glutamatergic state. This drug reduced augmented glutamate levels and normalized increased alcohol consumption in Per2Brdm1 mutant mice. Collectively, these data establish glutamate as a link between dysfunction of the circadian clock gene Per2 and enhanced alcohol intake.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of the glutamate transporter Eaat1 in brain tissue.
Figure 2: Protein levels of mGluRs1, 2, 3, 5 and Eaat2.
Figure 3: Glutamate levels in brain tissue and glutamate uptake by astrocytes.
Figure 4: Intake and preference of different alcohol solutions at increasing concentrations of Per2Brdm1 mutant mice and wild-type (wt) littermate mice.
Figure 5: Operant ethanol self-administration and progressive ratio measurements in Per2Brdm1 mutant mice and wild-type littermates.
Figure 6: Effects of acamprosate on extracellular glutamate levels and alcohol consumption in Per2Brdm1 mutant mice and wild-type littermates.

Similar content being viewed by others

References

  1. Young, M.W. & Kay, S.A. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2, 702–715 (2001).

    Article  CAS  Google Scholar 

  2. Hastings, M.H., Reddy, A.B. & Maywood, E.S. A clockwork web: timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4, 649–661 (2003).

    Article  CAS  Google Scholar 

  3. King, D.P. & Takahashi, J.S. Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 23, 713–742 (2000).

    Article  CAS  Google Scholar 

  4. Reppert, S.M. & Weaver, D.R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    Article  CAS  Google Scholar 

  5. Albrecht, U. Invited review: regulation of mammalian circadian clock genes. J. Appl. Physiol. 92, 1348–1355 (2002).

    Article  CAS  Google Scholar 

  6. Buijs, R.M. & Kalsbeek, A. Hypothalamic integration of central and peripheral clocks. Nat. Rev. Neurosci. 2, 521–526 (2001).

    Article  CAS  Google Scholar 

  7. Ebling, F.J. The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog. Neurobiol. 50, 109–132 (1996).

    Article  CAS  Google Scholar 

  8. Yan, L. & Silver, R. Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts. Eur. J. Neurosci. 16, 1531–1540 (2002).

    Article  Google Scholar 

  9. Albrecht, U. et al. mPer1 and mPer2 are essential for normal resetting of the circadian clock. J. Biol. Rhythms. 16, 100–104 (2001).

    Article  CAS  Google Scholar 

  10. Danbolt, N.C. Glutamate uptake. Prog. Neurobiol. 65, 1–105 (2001).

    Article  CAS  Google Scholar 

  11. Rothstein, J.D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686 (1996).

    Article  CAS  Google Scholar 

  12. Tsai, G. Coyle, JT. The role of glutamatergic neurotransmission in the pathophysiology of alcoholism. Annu. Rev. Med. 49, 173–184 (1998).

    Article  CAS  Google Scholar 

  13. Pulvirenti, L. & Diana, M. Drug dependence as a disorder of neural plasticity: focus on dopamine and glutamate. Rev. Neurosci. 12, 141–158 (2001).

    Article  CAS  Google Scholar 

  14. Siggins, G.R. et al. Glutamatergic transmission in opiate and alcohol dependence. Ann. NY Acad. Sci. 1003, 196–211 (2003).

    Article  CAS  Google Scholar 

  15. Littleton, J. Acamprosate in alcohol dependence: how does it work? Addiction 90, 1179–1188 (1995).

    Article  CAS  Google Scholar 

  16. Spanagel, R, Zieglgansberger, W. Anti-craving compounds for ethanol: new pharmacological tools to study addictive processes. Trends Pharmacol. Sci. 18, 54–59 (1997).

    Article  CAS  Google Scholar 

  17. Koob, G.F. et al. Potential neuroprotective effects of acamprosate. Alcohol. Clin. Exp. Res. 26, 586–592 (2002).

    Article  CAS  Google Scholar 

  18. Heinz, A., Schafer, M, Higley, J.D., Krystal, J.H. & Goldman, D. Neurobiological correlates of the disposition and maintenance of alcoholism. Pharmacopsychiatry 36, 255–258 (2003).

    Article  Google Scholar 

  19. Krystal, J.H. et al. N-methyl-D-aspartate glutamate receptors and alcoholism: reward, dependence, treatment, and vulnerability. Pharmacol. Ther. 99, 79–94 (2003).

    Article  CAS  Google Scholar 

  20. Spanagel, R. & Bienkowski, P. Alcohol dependence and addiction, in Ionotropic glutamate receptors as therapeutic targets (eds Lodge, D., Danysz, W. & Parsons, C.G.) pp 1–27 (FP Graham Publishing Co., Johnson City, Tennessee, 2002).

    Google Scholar 

  21. Aronica, E. et al. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur. J. Neurosci. 17, 2106–2118 (2003).

    Article  Google Scholar 

  22. Spanagel, R. et al. The neuronal nitric oxide synthase gene is critically involved in neurobehavioral effects of alcohol. J. Neurosci. 22, 8676–8683 (2002).

    Article  CAS  Google Scholar 

  23. McQuade, J.A., Xu, M., Woods, S.C., Seeley, R.J. & Benoit, S.C. Ethanol consumption in mice with a targeted disruption of the dopamine-3 receptor gene. Addict. Biol. 8, 295–303 (2003).

    Article  CAS  Google Scholar 

  24. Matsumoto, H & Fukui, Y. Pharmacokinetics of ethanol: a review of the methodology. Addict. Biol. 7, 5–14 (2002).

    Article  CAS  Google Scholar 

  25. Jelic, P., Shih, M.F. & Taberner, P.V. Diurnal variation in plasma ethanol levels of TO and CBA mice on chronic ethanol drinking or ethanol liquid diet schedules. Psychopharmacology 138, 143–150 (1997).

    Article  Google Scholar 

  26. Salamone, J.D., Correa, M., Mingote, S. & Weber, S.M. Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J. Pharmacol. Exp.Ther. 305, 1–8 (2003).

    Article  CAS  Google Scholar 

  27. Schreiber, R. & Freund, W.D. Glutamate transport is downregulated in the cerebral cortex of alcohol-preferring rats. Med. Sci. Monit. 6, 649–652 (2000).

    CAS  PubMed  Google Scholar 

  28. Sass, H., Soyka, M., Mann, K., & Zieglgänsberger, W. Relapse prevention by acamprosate. Results from a placebo-controlled study on alcohol dependence. Arch. Gen. Psychiatry 53, 673–680 (1996).

    Article  CAS  Google Scholar 

  29. Mann, K., Lehert, P. & Morgan, M.Y. The efficacy of acamprosate in the maintenance of abstinence in alcohol-dependent individuals: results of a meta-analysis. Alcohol. Clin. Exp. Res. 28, 51–63 (2004).

    Article  Google Scholar 

  30. Lê, A.D. & Shaham, Y. Neurobiology of relapse to alcohol in rats. Pharmacol. & Ther. 94, 137–156 (2002).

    Article  Google Scholar 

  31. Weiss, F. & Porrino, L.J. Behavioral neurobiology of alcohol addiction: recent advances and challenges. J. Neurosci. 22: 3332–3337 (2002).

    Article  CAS  Google Scholar 

  32. Dahchour, A. & De Witte, P. Ethanol and amino acids in the central nervous system: assessment of the pharmacological actions of acamprosate. Prog. Neurobiol. 60, 343–362 (2000).

    Article  CAS  Google Scholar 

  33. Dahchour, A. & De Witte, P. Effects of acamprosate on excitatory amino acids during multiple ethanol withdrawal periods. Alcohol. Clin. Exp. Res. 27, 465–470 (2003).

    Article  CAS  Google Scholar 

  34. Cano-Cebrian, M.J. et al. Acamprosate blocks the increase in dopamine extracellular levels in nucleus accumbens evoked by chemical stimulation of the ventral hippocampus. Naunyn-Schmiedebergs Arch. Pharmacol. 368, 324–327 (2003).

    Article  CAS  Google Scholar 

  35. Spanagel, R. & Weiss, F. The dopamine hypothesis of reward: past and current status. Trends Neurosci. 22, 521–527 (1999).

    Article  CAS  Google Scholar 

  36. Bucholz, K.K. et al. A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. J. Stud. Alcohol. 55 149–158. (1994).

    Article  CAS  Google Scholar 

  37. Schumann, G. et al. Analysis of genetic variations of Protein Tyrosine Kinase fyn and their association with alcohol dependence in two independent cohorts. Biol. Psychiatry 54, 1422–1426 (2003).

    Article  CAS  Google Scholar 

  38. Andretic, R., Chaney, S. & Hirsh J. Requirement of circadian genes for cocaine sensitization in drosophila. Science 285, 1066–1068 (1999).

    Article  CAS  Google Scholar 

  39. Abarca, C., Albrecht, U. & Spanagel, R. Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc. Natl. Acad. Sci. USA 99, 9026–9030 (2002).

    Article  CAS  Google Scholar 

  40. Liu, Y. et al. The role of mPer1 on morphine dependence in mice. Neuropsychopharmacology (in press).

  41. Yuferov, V. et al. Differential gene expression in the rat caudate putamen after “binge” cocaine administration: advantage of triplicate microarray analysis. Synapse 48, 157–169 (2003).

    Article  CAS  Google Scholar 

  42. Nikaido, T., Akyiama, M., Moriya, T. & Shibata, S. Sensitized increase of Period gene expression in the mouse caudate/putamen caused by repeated injection of methamphetamine. Mol. Pharmacol. 59, 894–900 (2001).

    Article  CAS  Google Scholar 

  43. Masubuchi, S. et al. Clock genes outside the suprachiasmatic nucleus involved in manifestation of locomotor activity rhythm in rats. Eur. J. Neurosci. 12, 4206–4214 (2000).

    CAS  PubMed  Google Scholar 

  44. Trinkoff, A.M. & Storr, C.L. Work schedule characteristics and substance use. Am. J. Ind. Med. 34, 266–271 (1998).

    Article  CAS  Google Scholar 

  45. Rogers, H.L. and Reilly, S.M. A survey of the health experiences of international business travellers. AAOHN J. 50, 449–459 (2002).

    Article  Google Scholar 

  46. Zhang, B. et al. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400, 169–173 (1999).

    Article  Google Scholar 

  47. Smolders, I., Sarre, S., Michotte, Y. & Ebinger, G. The analysis of excitatory, inhibitory and other amino acids in rat brain microdialysates using microbore liquid chromatography. J. Neurosci. Meth. 57, 47–53 (1995).

    Article  CAS  Google Scholar 

  48. Armitage, P. Tests for linear trends in proportions and frequencies. Biometrics 11, 375–386 (1955).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by two Bundeministerium für Bildung und Forschung grants: FKZ 01GS0475/NGFN to R.S. and G.S., and FKZ 01 EB 0410 to R.S. and GS (MWK-BW Projekt 12a), the Swiss National Science Foundation (SNF 31-63653.00) to U.A., the State of Fribourg, and two EC grants: TARGALC QLG3-CT-2002-01048 to R.S., and Braintime QLG3-CT-2002-01829 to U.A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rainer Spanagel or Urs Albrecht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Distribution of genotypes and results of association tests of alcohol dependent patients with high (≥300 g/d) and low (≤300 g/d) alcohol intake. (PDF 17 kb)

Supplementary Table 2

Results of haplotype analysis (PDF 15 kb)

Supplementary Methods (PDF 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spanagel, R., Pendyala, G., Abarca, C. et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 11, 35–42 (2005). https://doi.org/10.1038/nm1163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing