Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biosynthesis of polybrominated aromatic organic compounds by marine bacteria

Abstract

Polybrominated diphenyl ethers (PBDEs) and polybrominated bipyrroles are natural products that bioaccumulate in the marine food chain. PBDEs have attracted widespread attention because of their persistence in the environment and potential toxicity to humans. However, the natural origins of PBDE biosynthesis are not known. Here we report marine bacteria as producers of PBDEs and establish a genetic and molecular foundation for their production that unifies paradigms for the elaboration of bromophenols and bromopyrroles abundant in marine biota. We provide biochemical evidence of marine brominases revealing decarboxylative-halogenation enzymology previously unknown among halogenating enzymes. Biosynthetic motifs discovered in our study were used to mine sequence databases to discover unrealized marine bacterial producers of organobromine compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures and sources of marine polybrominated natural products.
Figure 2: Genetic basis of the Bmp pathway.
Figure 3: In vitro reconstitution of activity for brominase Bmp2.
Figure 4: Biosynthesis of bromophenols by flavin-dependent decarboxylase-brominase Bmp5.
Figure 5: Enzymatic synthesis of polybrominated biphenyls and OH-BDEs.
Figure 6: Bi-modular scheme for the biosynthesis of polybrominated marine natural products by the bmp pathway.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Referenced accessions

GenBank/EMBL/DDBJ

References

  1. Gribble, G.W. The natural production of organobromine compounds. Environ. Sci. Pollut. Res. Int. 7, 37–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Gribble, G.W. Naturally Occurring Organohalogen Compounds—a Comprehensive Update. Vol. 91 (Springer Vienna, 2010).

  3. Liu, Y.N. et al. Spatial and temporal distributions of bromoform and dibromomethane in the Atlantic Ocean and their relationship with photosynthetic biomass. J. Geophys. Res.–Oceans 118, 3950–3965 (2013).

    Article  CAS  Google Scholar 

  4. Al-Mourabit, A., Zancanella, M.A., Tilvi, S. & Romo, D. Biosynthesis, asymmetric synthesis, and pharmacology, including cellular targets, of the pyrrole-2-aminoimidazole marine alkaloids. Nat. Prod. Rep. 28, 1229–1260 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gaul, S. et al. Identification of the natural product 2,3,4,5-tetrabromo-1-methylpyrrole in Pacific biota, passive samplers and seagrass from Queensland, Australia. Mar. Pollut. Bull. 62, 2463–2468 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Kitamura, M., Koyama, T., Nakano, Y. & Uemura, D. Corallinafuran and Corallinaether, novel toxic compounds from crustose coralline red algae. Chem. Lett. 34, 1272–1273 (2005).

    Article  CAS  Google Scholar 

  7. Kuniyoshi, M., Yamada, K. & Higa, T. A biologically-active diphenyl ether from the green-alga Cladophora fascicularis. Experientia 41, 523–524 (1985).

    Article  CAS  Google Scholar 

  8. Malmväm, A., Zebuhr, Y., Kautsky, L., Bergman, K. & Asplund, L. Hydroxylated and methoxylated polybrominated diphenyl ethers and polybrominated dibenzo-p-dioxins in red alga and cyanobacteria living in the Baltic Sea. Chemosphere 72, 910–916 (2008).

    Article  CAS  Google Scholar 

  9. King, G.M., Giray, C. & Kornfield, I. Biogeographical, biochemical and genetic differentiation among North-American Saccoglossids (Hemichordata, Enteropneusta, Harrimaniidae). Mar. Biol. 123, 369–377 (1995).

    Article  CAS  Google Scholar 

  10. Unson, M.D., Holland, N.D. & Faulkner, D.J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119, 1–11 (1994).

    Article  CAS  Google Scholar 

  11. Calcul, L. et al. NMR strategy for unraveling structures of bioactive sponge-derived oxy-polyhalogenated diphenyl ethers. J. Nat. Prod. 72, 443–449 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Löfstrand, K. et al. Brominated phenols, anisoles, and dioxins present in blue mussels from the Swedish coastline. Environ. Sci. Pollut. Res. Int. 17, 1460–1468 (2010).

    Article  PubMed  CAS  Google Scholar 

  13. Vetter, W., Scholz, E., Gaus, C., Müller, J.F. & Haynes, D. Anthropogenic and natural organohalogen compounds in blubber of dolphins and dugongs (Dugong dugon) from northeastern Australia. Arch. Environ. Contam. Toxicol. 41, 221–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Marsh, G. et al. Identification, quantification, and synthesis of a novel dimethoxylated polybrominated biphenyl in marine mammals caught off the coast of Japan. Environ. Sci. Technol. 39, 8684–8690 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Teuten, E.L., Xu, L. & Reddy, C.M. Two abundant bioaccumulated halogenated compounds are natural products. Science 307, 917–920 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Wan, Y. et al. Origin of hydroxylated brominated diphenyl ethers: natural compounds or man-made flame retardants? Environ. Sci. Technol. 43, 7536–7542 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Ren, X.M. & Guo, L.H. Molecular toxicology of polybrominated diphenyl ethers: nuclear hormone receptor mediated pathways. Environ. Sci. Process. Impacts 15, 702–708 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Isnansetyo, A. & Kamei, Y. MC21-A, a bactericidal antibiotic produced by a new marine bacterium, Pseudoalteromonas phenolica sp. nov. O-BC30T, against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47, 480–488 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Andersen, R.J., Wolfe, M.S. & Faulkner, D.J. Autotoxic antibiotic production by a marine chromobacterium. Mar. Biol. 27, 281–285 (1974).

    Article  CAS  Google Scholar 

  20. Burkholder, P.R., Pfister, R.M. & Leitz, F.H. Production of a pyrrole antibiotic by a marine bacterium. Appl. Microbiol. 14, 649–653 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Holmström, C. & Kjelleberg, S. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol. 30, 285–293 (1999).

    Article  PubMed  Google Scholar 

  22. Vetter, W. Polyhalogenated alkaloids in environmental and food samples. Alkaloids Chem. Biol. 71, 211–276 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Rypien, K.L., Ward, J.R. & Azam, F. Antagonistic interactions among coral-associated bacteria. Environ. Microbiol. 12, 28–39 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Dorrestein, P.C., Yeh, E., Garneau-Tsodikova, S., Kelleher, N.L. & Walsh, C.T. Dichlorination of a pyrrolyl-S-carrier protein by FADH2-dependent halogenase PltA during pyoluteorin biosynthesis. Proc. Natl. Acad. Sci. USA 102, 13843–13848 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peschke, J.D., Hanefeld, U. & Laatsch, H. Biosynthesis of the marine antibiotic pentabromopseudilin. 2. The pyrrole ring. Biosci. Biotechnol. Biochem. 69, 628–630 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Lucas-Elío, P. et al. Complete genome sequence of the melanogenic marine bacterium Marinomonas mediterranea type strain (MMB-1T). Stand. Genomic Sci. 6, 63–73 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Donia, M.S., Fricke, W.F., Ravel, J. & Schmidt, E.W. Variation in tropical reef symbiont metagenomes defined by secondary metabolism. PLoS ONE 6, e17897 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sorokin, D.Y., Tourova, T.P., Lysenko, A.M., Mityushina, L.L. & Kuenen, J.G. Thioalkalivibrio thiocyanoxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria capable of growth on thiocyanate, from soda lakes. Int. J. Syst. Evol. Microbiol. 52, 657–664 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Walsh, C.T., Garneau-Tsodikova, S. & Howard-Jones, A.R. Biological formation of pyrroles: nature's logic and enzymatic machinery. Nat. Prod. Rep. 23, 517–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Buedenbender, S., Rachid, S., Muller, R. & Schulz, G.E. Structure and action of the myxobacterial chondrochloren halogenase CndH: a new variant of FAD-dependent halogenases. J. Mol. Biol. 385, 520–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. van Pée, K.H. Enzymatic chlorination and bromination. Methods Enzymol. 516, 237–257 (2012).

    Article  PubMed  CAS  Google Scholar 

  32. Eichhorn, E., van der Ploeg, J.R. & Leisinger, T. Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J. Biol. Chem. 274, 26639–26646 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Blasiak, L.C. & Drennan, C.L. Structural perspective on enzymatic halogenation. Acc. Chem. Res. 42, 147–155 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Gribble, G.W. Occurrence of halogenated alkaloids. Alkaloids Chem. Biol. 71, 1–165 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Hanefeld, U., Floss, H.G. & Laatsch, H. Biosynthesis of the marine antibiotic pentabromopseudilin. 1. The benzene-ring. J. Org. Chem. 59, 3604–3608 (1994).

    Article  CAS  Google Scholar 

  36. Walsh, C.T. & Wencewicz, T.A. Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 30, 175–200 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Hewson, W.D. & Hager, L.P. Bromoperoxidases and halogenated lipids in marine-algae. J. Phycol. 16, 340–345 (1980).

    Article  CAS  Google Scholar 

  38. Borchardt, S.A. et al. Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl. Environ. Microbiol. 67, 3174–3179 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beissner, R.S., Guilford, W.J., Coates, R.M. & Hager, L.P. Synthesis of brominated heptanones and bromoform by a bromoperoxidase of marine origin. Biochemistry 20, 3724–3731 (1981).

    Article  CAS  PubMed  Google Scholar 

  40. Fehér, D., Barlow, R., McAtee, J. & Hemscheidt, T.K. Highly brominated antimicrobial metabolites from a marine Pseudoalteromonas sp. J. Nat. Prod. 73, 1963–1966 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Mas, S. et al. Comprehensive liquid chromatography-ion-spray tandem mass spectrometry method for the identification and quantification of eight hydroxylated brominated diphenyl ethers in environmental matrices. J. Mass Spectrom. 42, 890–899 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Makino, M. et al. Crystal structures and catalytic mechanism of cytochrome P450 StaP that produces the indolocarbazole skeleton. Proc. Natl. Acad. Sci. USA 104, 11591–11596 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ballou, D.P., Entsch, B. & Cole, L.J. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. Biochem. Biophys. Res. Commun. 338, 590–598 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Eppink, M.H., Cammaart, E., Van Wassenaar, D., Middelhoven, W.J. & van Berkel, W.J. Purification and properties of hydroquinone hydroxylase, a FAD-dependent monooxygenase involved in the catabolism of 4-hydroxybenzoate in Candida parapsilosis CBS604. Eur. J. Biochem. 267, 6832–6840 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Eppink, M.H., Boeren, S.A., Vervoort, J. & van Berkel, W.J. Purification and properties of 4-hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine dinucleotide-dependent monooxygenase from Candida parapsilosis CBS604. J. Bacteriol. 179, 6680–6687 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H. & Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 30, 237–323 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Wiseman, S.B. et al. Polybrominated diphenyl ethers and their hydroxylated/methoxylated analogs: environmental sources, metabolic relationships, and relative toxicities. Mar. Pollut. Bull. 63, 179–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Ucán-Marin, F., Arukwe, A., Mortensen, A.S., Gabrielsen, G.W. & Letcher, R.J. Recombinant albumin and transthyretin transport proteins from two gull species and human: chlorinated and brominated contaminant binding and thyroid hormones. Environ. Sci. Technol. 44, 497–504 (2010).

    Article  PubMed  CAS  Google Scholar 

  49. Meerts, I.A. et al. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol. Sci. 56, 95–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Dorrestein, P.C. & Kelleher, N.L. Dissecting non-ribosomal and polyketide biosynthetic machineries using electrospray ionization Fourier-Transform mass spectrometry. Nat. Prod. Rep. 23, 893–918 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. John, E.A., Pollet, P., Gelbaum, L. & Kubanek, J. Regioselective syntheses of 2,3,4-tribromopyrrole and 2,3,5-tribromopyrrole. J. Nat. Prod. 67, 1929–1931 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Markowitz, V.M. et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25, 2271–2278 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Kouprina, N. & Larionov, V. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat. Protoc. 3, 371–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Gust, B., Challis, G.L., Fowler, K., Kieser, T. & Chater, K.F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100, 1541–1546 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, D.B. et al. Chapter 19. In vitro studies of phenol coupling enzymes involved in vancomycin biosynthesis. Methods Enzymol. 458, 487–509 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues E. Frick for preliminary in vitro studies with Bmp6, B.M. Duggan for assistance in NMR data collection, P.A. Jordan for NMR data analysis, Y. Su for MS data collection and L.I. Aluwihare for useful discussions. This work was jointly supported by the US National Science Foundation (OCE-1313747) and the US National Institute of Environmental Health Sciences (P01-ES021921) through the Oceans and Human Health program, the Gordon and Betty Moore Foundation Marine Microbial Sequencing Project, the Helen Hay Whitney Foundation postdoctoral fellowship to V.A., the US National Institutes of Health (NIH) Marine Biotechnology Training Grant predoctoral fellowship to A.A.E. (T32-GM067550) and an NIH instrument grant (S10-RR031562).

Author information

Authors and Affiliations

Authors

Contributions

V.A., A.A.E., E.E.A. and B.S.M. designed research; V.A., A.A.E. and K.Y. performed genetic experiments; V.A., A.A.E. and R.D.K. performed in vitro experiments; M.S. and E.E.A. generated sequencing data; D.P. contributed new analytical reagents; and V.A., A.A.E., E.E.A. and B.S.M. analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Bradley S Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Notes 1 and 2, Supplementary Figures 1–30 and Supplementary Tables 1–5. (PDF 4750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, V., El Gamal, A., Yamanaka, K. et al. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat Chem Biol 10, 640–647 (2014). https://doi.org/10.1038/nchembio.1564

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1564

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology