Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters

Abstract

Identifying and understanding the active sites responsible for reaction turnover is critical to developing improved catalysts. For the hydrogen-evolution reaction (HER), MoS2 has been identified as an active non-noble-metal-based catalyst. However, only edge sites turnover the reaction because the basal planes are catalytically inert. In an effort to develop a scalable HER catalyst with an increased number of active sites, herein we report a Mo–S catalyst (supported thiomolybdate [Mo3S13]2− nanoclusters) in which most sulfur atoms in the structure exhibit a structural motif similar to that observed at MoS2 edges. Supported sub-monolayers of [Mo3S13]2− nanoclusters exhibited excellent HER activity and stability in acid. Imaging at the atomic scale with scanning tunnelling microscopy allowed for direct characterization of these supported catalysts. The [Mo3S13]2− nanoclusters reported herein demonstrated excellent turnover frequencies, higher than those observed for other non-precious metal catalysts synthesized by a scalable route.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of [Mo3S13]2−.
Figure 2: Atom-resolved STM.
Figure 3: XPS spectra and fitted peaks of sub-monolayer [Mo3S13]2− clusters on HOPG.
Figure 4: HER activity of [Mo3S13]2− clusters.

Similar content being viewed by others

References

  1. US Energy Information Administration. The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions (US Energy Information Administration, 2008).

  2. Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004).

    Article  CAS  Google Scholar 

  3. Nowotny, J., Sorrell, C. C., Sheppard, L. R. & Bak, T. Solar-hydrogen: environmentally safe fuel for the future. Int. J. Hydrogen Energy 30, 521–544 (2005).

    Article  CAS  Google Scholar 

  4. Chen, Z. et al. Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010).

    Article  Google Scholar 

  5. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  6. Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    Article  CAS  Google Scholar 

  7. Choquette, Y., Brossard, L., Lasia, A. & Ménard, H. Investigation of hydrogen evolution on Raney–Nickel composite-coated electrodes. Electrochim. Acta 35, 1251–1256 (1990).

    Article  CAS  Google Scholar 

  8. Lačnjevac, U. Č., Jović, B. M., Jović, V. D. & Krstajić, N. V. Determination of kinetic parameters for the hydrogen evolution reaction on the electrodeposited Ni–MoO2 composite coating in alkaline solution. J. Electroanal. Chem. 677–680, 31–40 (2012).

    Article  Google Scholar 

  9. McKone, J. R., Sadtler, B., Werlang, C. A., Lewis, N. S. & Gray, H. B. Ni–Mo nanopowder for efficient electrochemical hydrogen evolution. ACS Catal. 3, 166–169 (2013).

    Article  CAS  Google Scholar 

  10. Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article  CAS  Google Scholar 

  11. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  Google Scholar 

  12. Karunadasa, H. I. et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012).

    Article  CAS  Google Scholar 

  13. Li, Y. et al. MoS2 Nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

    Article  CAS  Google Scholar 

  14. Xiang, Q. J., Yu, J. G. & Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012).

    Article  CAS  Google Scholar 

  15. Chen, Z. et al. Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett. 11, 4168–4175 (2011).

    Article  CAS  Google Scholar 

  16. Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Mater. 11, 963–969 (2012).

    Article  CAS  Google Scholar 

  17. Merki, D., Fierro, S., Vrubel, H. & Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011).

    Article  CAS  Google Scholar 

  18. Benck, J. D., Chen, Z. B., Kuritzky, L. Y., Forman, A. J. & Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2, 1916–1923 (2012).

    Article  CAS  Google Scholar 

  19. Le Goff, A. et al. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384–1387 (2009).

    Article  CAS  Google Scholar 

  20. Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011).

    Article  CAS  Google Scholar 

  21. Andreiadis, E. S. et al. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions. Nature Chem. 5, 48–53 (2013).

    Article  CAS  Google Scholar 

  22. Mondal, B. et al. Cobalt corrole catalyst for efficient hydrogen evolution reaction from H2O under ambient conditions: reactivity, spectroscopy, and density functional theory calculations. Inorg. Chem. 52, 3381–3387 (2013).

    Article  CAS  Google Scholar 

  23. Duval, S. et al. Capture of the [Mo3S4]4+ cluster within a {Mo18} macrocycle yielding a supramolecular assembly stabilized by a dynamic H-bond network. J. Am. Chem. Soc. 132, 2069–2077 (2010).

    Article  CAS  Google Scholar 

  24. Hijazi, A. et al. Tuning the electrocatalytic hydrogen evolution reaction promoted by [Mo2O2S2]-based molybdenum cycles in aqueous medium. Dalton Trans. 42, 4848–4858 (2013).

    Article  CAS  Google Scholar 

  25. McKone, J. R., Gray, H. B. & Lewis, N. S. Will solar-driven water-splitting devices see the light of day? Chem. Mater. http://dx.doi.org/10.1021/cm4021518 (2013).

  26. Müller, A., Krickemeyer, E., Hadjikyriacou, A. & Coucouvanis, D. in Inorganic Syntheses Vol. 27 (ed. Ginsberg, A.P.) 47–51 (John Wiley, 2007).

    Book  Google Scholar 

  27. Müller, A., Wittneben, V., Krickemeyer, E., Bogge, H. & Lemke, M. Studies on the triangular cluster [Mo3S13]2−: electronic structure (Xa calculations, XPS), crystal structure of (Ph4,As)2[Mo3S13]·2CH3CN and a refinement of the crystal structure of (NH4)2[Mo3S13]·H2O. Z. Anorg. Allg. Chem. 605, 175–188 (1991).

    Article  Google Scholar 

  28. Leist, A. et al. Semiporous MoS2 obtained by the decomposition of thiomolybdate precursors. J. Mater. Chem. 8, 241–244 (1998).

    Article  CAS  Google Scholar 

  29. Boudart, M. Turnover rates in heterogeneous catalysis. Chem. Rev. 95, 661–666 (1995).

    Article  CAS  Google Scholar 

  30. Zambelli, T., Wintterlin, J., Trost, J. & Ertl, G. Identification of the ‘active sites’ of a surface-catalyzed reaction. Science 273, 1688–1690 (1996).

    Article  CAS  Google Scholar 

  31. Vang, R. T., Lauritsen, J. V., Laegsgaard, E. & Besenbacher, F. Scanning tunneling microscopy as a tool to study catalytically relevant model systems. Chem. Soc. Rev. 37, 2191–2203 (2008).

    Article  CAS  Google Scholar 

  32. Helveg, S. et al. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 84, 951–954 (2000).

    Article  CAS  Google Scholar 

  33. Lauritsen, J. V. et al. Size-dependent structure of MoS2 nanocrystals. Nature Nanotech. 2, 53–58 (2007).

    Article  CAS  Google Scholar 

  34. Sun, D. et al. An MoSx structure with high affinity for adsorbate interaction. Angew. Chem. Int. Ed. 51, 10284–10288 (2012).

    Article  CAS  Google Scholar 

  35. Muijsers, J. C., Weber, T., Vanhardeveld, R. M., Zandbergen, H. W. & Niemantsverdriet, J. W. Sulfidation study of molybdenum oxide using MoO3/SiO2/Si(100) model catalysts and Mo3IV–sulfur cluster compounds. J. Catal. 157, 698–705 (1995).

    Article  CAS  Google Scholar 

  36. Weber, T., Muijsers, J. C. & Niemantsverdriet, J. W. Structure of amorphous MoS3 . J. Phys. Chem. 99, 9194–9200 (1995).

    Article  CAS  Google Scholar 

  37. Lefebvre, M. in Modern Aspects of Electrochemistry Vol. 32 (eds Conway, B. E., Bockris J. O. M. & White, R.) 249–300 (Springer, 2002).

    Book  Google Scholar 

  38. Kodintsev, I. M. & Trasatti, S. Electrocatalysis of H2 evolution on RuO2+IrO2 mixed oxide electrodes. Electrochim. Acta 39, 1803–1808 (1994).

    Article  CAS  Google Scholar 

  39. Jaramillo, T. F. et al. Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts. J. Phys. Chem. C 112, 17492–17498 (2008).

    Article  CAS  Google Scholar 

  40. Chen, W-F. et al. Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 51, 6131–6135 (2012).

    Article  CAS  Google Scholar 

  41. Bonde, J., Moses, P. G., Jaramillo, T. F., Norskov, J. K. & Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 140, 219–231 (2008).

    Article  CAS  Google Scholar 

  42. Merki, D., Vrubel, H., Rovelli, L., Fierro, S. & Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 3, 2515–2525 (2012).

    Article  CAS  Google Scholar 

  43. Tran, P. D. et al. Novel cobalt/nickel–tungsten–sulfide catalysts for electrocatalytic hydrogen generation from water. Energy Environ. Sci. 6, 2452–2459 (2013).

    Article  CAS  Google Scholar 

  44. Tran, P. D. et al. Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water. Energy Environ. Sci. 5, 8912–8916 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.K. gratefully acknowledges the Carlsberg Foundation for a postdoctoral fellowship. J.K. and T.F.J. acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0008685. We thank Z. Chen for helpful discussion and A. V. Malkovskiy for assistance with Raman spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Contributions

J.K. conceived the studies and performed the experimental work. J.K., T.F.J. and F.B. conducted data analysis and co-wrote the paper.

Corresponding author

Correspondence to Flemming Besenbacher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6747 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kibsgaard, J., Jaramillo, T. & Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nature Chem 6, 248–253 (2014). https://doi.org/10.1038/nchem.1853

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1853

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing