Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atom-by-atom engineering and magnetometry of tailored nanomagnets

Abstract

Nanomagnets, namely arrays of a few exchange-coupled atomic magnetic moments, possess a rich variety of magnetic properties and are explored as constituents of nanospintronics technologies. They have been realized as magnetic clusters or molecular nanomagnets. Individual nanomagnets, built from magnetic atoms adsorbed onto a nonmagnetic surface (adatoms) coupled by Ruderman–Kittel–Kasuya–Yosida exchange, exhibit a high level of versatility resulting from distance-dependent interactions. Here, we combine spin-resolved scanning tunnelling microscopy, atom manipulation and simulations to tailor nanomagnets ranging from linear chains to complex two-dimensional arrays and perform magnetometry in an atom-by-atom fashion. Distinct ground states of each chain, depending on even or odd numbers of constituent atoms, and magnetic frustration within the arrays have been observed directly. Our work demonstrates real-space access to the magnetic states of tailored nanostructures providing an approach to tackling open fundamental questions in magnetism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distance dependency of pairwise RKKY interaction energy.
Figure 2: Antiferromagnetic chains of even and odd numbers of Fe atoms.
Figure 3: Equilateral antiferromagnetic triplets.
Figure 4: Antiferromagnetic ‘flower’.
Figure 5: Antiferromagnetic ‘kagome’.

Similar content being viewed by others

References

  1. Gatteschi, D. & Sessoli, R. Molecular Nanomagnets (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  2. Bucher, J. P., Douglass, D. C. & Bloomfield, L. A. Magnetic properties of free cobalt clusters. Phys. Rev. Lett. 66, 3052–3055 (1991).

    Article  ADS  Google Scholar 

  3. Lau, J. T., Föhlisch, A., Nietubyc`, R., Reif, M. & Wurth, W. Size-dependent magnetism of deposited small iron clusters studied by X-ray magnetic circular dichroism. Phys. Rev. Lett. 89, 057201 (2002).

    Article  ADS  Google Scholar 

  4. Manoharan, H., Lutz, C. & Eigler, D. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).

    Article  ADS  Google Scholar 

  5. Gambardella, P. et al. Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301–304 (2002).

    Article  ADS  Google Scholar 

  6. Knorr, N. et al. Long-range adsorbate interactions mediated by a two-dimensional electron gas. Phys. Rev. B 65, 115420 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  7. Silly, F. et al. Creation of an atomic superlattice by immersing metallic adatoms in a two-dimensional electron sea. Phys. Rev. Lett. 92, 16101 (2004).

    Article  ADS  Google Scholar 

  8. Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    Article  ADS  Google Scholar 

  9. Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 335, 196–199 (2012).

    ADS  Google Scholar 

  10. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  ADS  Google Scholar 

  11. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  ADS  Google Scholar 

  12. Krause, S., Berbil-Bautista, L., Herzog, G., Bode, M. & Wiesendanger, R. Current-induced magnetization switching with a spin-polarized scanning tunneling microscope. Science 317, 1537–1540 (2007).

    Article  ADS  Google Scholar 

  13. Wernsdorfer, W. & Sessoli, R. Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999).

    Article  ADS  Google Scholar 

  14. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    Article  ADS  Google Scholar 

  15. Troiani, F. et al. Molecular engineering of antiferromagnetic rings for quantum computation. Phys. Rev. Lett. 94, 207208 (2005).

    Article  ADS  Google Scholar 

  16. Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S=1/2 Kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).

    Article  ADS  Google Scholar 

  17. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  ADS  Google Scholar 

  18. Lounis, S., Mavropoulos, P., Dederichs, P. H. & Blügel, S. Noncollinear Korringa–Kohn–Rostoker Green function method: Application to 3d nanostructures on Ni(001). Phys. Rev. B 72, 224437 (2005).

    Article  ADS  Google Scholar 

  19. Bergman, A., Nordström, L., Burlamaqui Klautau, A., Frota-Pessôa, S. & Eriksson, O. Magnetic structures of small Fe, Mn, and Cr clusters supported on Cu(111): Noncollinear first-principles calculations. Phys. Rev. B 75, 224425 (2007).

    Article  ADS  Google Scholar 

  20. Lounis, S., Dederichs, P. H. & Blügel, S. Magnetism of nanowires driven by novel even–odd effects. Phys. Rev. Lett. 101, 107204 (2008).

    Article  ADS  Google Scholar 

  21. Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

    Article  ADS  Google Scholar 

  22. Kasuya, T. A theory of metallic ferro- and antiferromagnetism on Zener’s model. Prog. Theor. Phys. 16, 45–57 (1956).

    Article  ADS  Google Scholar 

  23. Yosida, K. Magnetic properties of Cu–Mn alloys. Phys. Rev. 106, 893–898 (1957).

    Article  ADS  Google Scholar 

  24. Stepanyuk, V. S., Niebergall, L., Longo, R. C., Hergert, W. & Bruno, P. Magnetic nanostructures stabilized by surface-state electrons. Phys. Rev. B 70, 075414 (2004).

    Article  ADS  Google Scholar 

  25. Zhou, L. et al. Strength and directionality of surface Ruderman–Kittel–Kasuya–Yosida interaction mapped on the atomic scale. Nature Phys. 6, 187–191 (2010).

    Article  ADS  Google Scholar 

  26. Stepanyuk, V. S., Negulyaev, N. N., Niebergall, L. & Bruno, P. Effect of quantum confinement of surface electrons on adatom–adatom interactions. New J. Phys. 9, 388 (2007).

    Article  ADS  Google Scholar 

  27. Brovko, O. O., Ignatiev, P. A., Stepanyuk, V. S. & Bruno, P. Tailoring exchange interactions in engineered nanostructures: An ab initio study. Phys. Rev. Lett. 101, 036809 (2008).

    Article  ADS  Google Scholar 

  28. Ising, E. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik A 31, 253–258 (1925).

    Article  ADS  Google Scholar 

  29. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  ADS  Google Scholar 

  30. Meier, F., Zhou, L., Wiebe, J. & Wiesendanger, R. Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82–86 (2008).

    Article  ADS  Google Scholar 

  31. Khajetoorians, A. A. et al. Itinerant nature of atom-magnetization excitation by tunneling electrons. Phys. Rev. Lett. 106, 037205 (2011).

    Article  ADS  Google Scholar 

  32. Wiebe, J. et al. A 300 mK ultra-high vacuum scanning tunneling microscope for spin-resolved spectroscopy at high energy resolution. Rev. Sci. Instrum. 75, 4871–4879 (2004).

    Article  ADS  Google Scholar 

  33. Simon, E. et al. Exchange interaction between magnetic adatoms on surfaces of noble metals. Phys. Rev. B 83, 224416 (2011).

    Article  ADS  Google Scholar 

  34. Ignatiev, P. et al. Magnetic ordering of nanocluster ensembles promoted by electronic substrate-mediated interaction: Ab initio and kinetic Monte Carlo studies. Phys. Rev. B 80, 165408 (2009).

    Article  ADS  Google Scholar 

  35. Kevan, S. D. & Gaylord, R. H. High-resolution photoemission study of the electronic structure of the noble-metal (111) surfaces. Phys. Rev. B 36, 5809–5818 (1987).

    Article  ADS  Google Scholar 

  36. Papanikolaou, N., Zeller, R. & Dederichs, P. H. Conceptual improvements of the KKR method. J. Phys. Condens. Matter 14, 2799–2823 (2002).

    Article  ADS  Google Scholar 

  37. Liechtenstein, A., Katsnelson, M., Antropov, V. & Gubanov, V. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987).

    Article  ADS  Google Scholar 

  38. Mazurenko, V. V., Iskakov, S. N., Rudenko, A. N., Anisimov, V. I. & Lichtenstein, A. I. Renormalized spectral function for Co adatom on the Pt(111) surface. Phys. Rev. B 82, 193403 (2010).

    Article  ADS  Google Scholar 

  39. Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).

    Article  ADS  Google Scholar 

  40. Slonczewski, J. C. Origin of biquadratic exchange in magnetic multilayers. J. Appl. Phys. 73, 5957–5962 (1993).

    Article  ADS  Google Scholar 

  41. Wieser, R., Vedmedenko, E. Y. & Wiesendanger, R. Entropy driven phase transition in itinerant antiferromagnetic monolayers. Phys. Rev. B 77, 064410 (2008).

    Article  ADS  Google Scholar 

  42. Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2005).

    Article  ADS  Google Scholar 

  43. Fennell, T., Bramwell, S. T., McMorrow, D. F., Manuel, P. & Wildes, A. R. Pinch points and Kasteleyn transitions in kagome ice. Nature Phys. 3, 566–572 (2007).

    Article  ADS  Google Scholar 

  44. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    Article  ADS  Google Scholar 

  45. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    Article  ADS  Google Scholar 

  46. Khajetoorians, A. A., Wiebe, J., Chilian, B. & Wiesendanger, R. Realizing all-spin-based logic operations atom by atom. Science 332, 1062–1064 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support from the European Research Council (ERC) Advanced Grant ‘FURORE’, by the Deutsche Forschungsgemeinschaft via the SFB668, as well as by the city of Hamburg via the cluster of excellence ‘Nanospintronics’ is gratefully acknowledged. S.L. acknowledges the support of the HGF-YIG Programme Funsilab—Functional Nanoscale Structure Probe and Simulation Laboratory (VH-NG-717). S. B. acknowledges support by the Helmholtz Association via grant POF-HGF-FIT. We would like to thank D. L. Mills, E. Y. Vedmedenko, R. Wieser, K. Them, P. H. Dederichs and N. P. Konstantinidis for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.A.K. and B.C. performed the experiments. A.A.K., B.C. and J.W. carried out the data analysis. S.L. carried out and analysed the ab initio calculations. J.W. and A.A.K wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jens Wiebe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3997 kb)

Supplementary Information

Supplementary Information (MOV 4866 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khajetoorians, A., Wiebe, J., Chilian, B. et al. Atom-by-atom engineering and magnetometry of tailored nanomagnets. Nature Phys 8, 497–503 (2012). https://doi.org/10.1038/nphys2299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing