Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors

Abstract

Heterojunctions between three-dimensional (3D) semiconductors with different bandgaps are the basis of modern light-emitting diodes1, diode lasers2 and high-speed transistors3. Creating analogous heterojunctions between different 2D semiconductors would enable band engineering within the 2D plane4,5,6 and open up new realms in materials science, device physics and engineering. Here we demonstrate that seamless high-quality in-plane heterojunctions can be grown between the 2D monolayer semiconductors MoSe2 and WSe2. The junctions, grown by lateral heteroepitaxy using physical vapour transport7, are visible in an optical microscope and show enhanced photoluminescence. Atomically resolved transmission electron microscopy reveals that their structure is an undistorted honeycomb lattice in which substitution of one transition metal by another occurs across the interface. The growth of such lateral junctions will allow new device functionalities, such as in-plane transistors and diodes, to be integrated within a single atomically thin layer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In-plane heteroepitaxy of 2D MoSe2–WSe2 lateral heterostructures.
Figure 2: TEM and energy dispersive spectroscopy (EDS) characterization.
Figure 3: 1D interface between 2D semiconductors.
Figure 4: Photoluminescence from 1D heterointerfaces.

Similar content being viewed by others

References

  1. Morkoc, H. & Mohammad, S. N. High-luminosity blue and blue–green gallium nitride light-emitting diodes. Science 267, 51–55 (1995).

    Article  CAS  Google Scholar 

  2. Zory, P. S. Quantum Well Lasers (Academic, 1993).

    Google Scholar 

  3. Minura, T., Hiyamizu, S., Fujii, T. & Nanbu, K. A new field-effect transistor with selectively doped GaAs/n-AlxGa1 − xAs heterojunctions. Jpn. J. Appl. Phys. 19, L225–L227 (1980).

    Article  Google Scholar 

  4. Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012).

    Article  CAS  Google Scholar 

  5. Liu, Z. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotech. 8, 119–124 (2013).

    Article  CAS  Google Scholar 

  6. Liu, L. et al. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343, 163–167 (2014).

    Article  CAS  Google Scholar 

  7. Wu, S. et al. Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7, 2768–2772 (2013).

    Article  CAS  Google Scholar 

  8. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  9. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  10. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  11. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nature Mater. 12, 815–820 (2013).

    Article  CAS  Google Scholar 

  12. Perkins, F. K. et al. Chemical vapor sensing with monolayer MoS2 . Nano Lett. 13, 668–673 (2013).

    Article  CAS  Google Scholar 

  13. Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).

    Article  CAS  Google Scholar 

  14. Sundaram, R. S. et al. Electroluminescence in single layer MoS2 . Nano Lett. 13, 1416–1421 (2013).

    Article  CAS  Google Scholar 

  15. Xiao, D., Liu, G., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  16. Kang, J., Tongay, S., Zhou, J., Li, J. & Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013).

    Article  Google Scholar 

  17. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1474 (2013).

    Article  Google Scholar 

  18. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013).

    Article  CAS  Google Scholar 

  19. Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2013).

    Article  CAS  Google Scholar 

  20. Brixner, L. H. Preparation and properties of the single crystalline AB2-type selenides and tellurides of niobium, tantalum, molybdenum and tungsten. J. Inorg. Nucl. Chem. 24, 257–263 (1962).

    Article  CAS  Google Scholar 

  21. Xu, K. et al. Atomic-layer triangular WSe2 sheets: Synthesis and layer-dependent photoluminescence property. Nanotechnology 24, 465705 (2013).

    Article  Google Scholar 

  22. Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  CAS  Google Scholar 

  23. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    Article  CAS  Google Scholar 

  24. Van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Mater. 12, 554–561 (2013).

    Article  CAS  Google Scholar 

  25. Tonnodorf, P. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2 . Opt. Express 21, 4908–4916 (2013).

    Article  Google Scholar 

  26. Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

    Article  CAS  Google Scholar 

  27. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Mater. 12, 754–759 (2013).

    Article  CAS  Google Scholar 

  28. Lin, Y. C., Dumcenco, D., Huang, Y-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2 . Nature Nanotech. 9, 391–396 (2014).

    Article  CAS  Google Scholar 

  29. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

    Article  CAS  Google Scholar 

  30. Muraki, K., Fukatsu, S., Shiraki, Y. & Ito, R. Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells. Appl. Phys. Lett. 61, 557–559 (1992).

    Article  CAS  Google Scholar 

  31. Tongay, S. et al. Two-dimensional semiconductor alloys: Monolayer Mo1 − xWxSe2 . Appl. Phys. Lett. 104, 012101 (2014).

    Article  Google Scholar 

  32. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Preprint at http://arxiv.org/abs/1403.4985 (2014)

Download references

Acknowledgements

This work is supported by DoE, BES, Materials Science and Engineering Division through X.X. (DE-SC0008145) and D.H.C. (DE-SC0002197). S.W. is supported partially by the State of Washington through the University of Washington Clean Energy Institute. W.Y. is supported by the Research Grant Council of Hong Kong (HKU705513P), the University Grant Committee (AoE/P-04/08) of the government of Hong Kong, and the Croucher Foundation under the Croucher Innovation Award. X.X. is grateful for the support of the Research Corporation through a Cottrell Scholar Award. A.M.S. thanks the Science City Research Alliance and the HEFCE Strategic Development Fund for funding support. J.J.P.P. acknowledges EPSRC funding through a Doctoral Training Grant.

Author information

Authors and Affiliations

Authors

Contributions

X.X. conceived the project. C.H. grew the material. S.W. led the sample characterization, assisted by C.H., J.S.R. and P.R., under the supervision of X.X. and D.H.C. A.M.S. led the aberration-corrected STEM, assisted by R.B. and J.J.P.P., with samples prepared by S.W. and C.H. S.W., D.H.C., X.X. and W.Y. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Sanfeng Wu or Ana M. Sanchez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1765 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Wu, S., Sanchez, A. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nature Mater 13, 1096–1101 (2014). https://doi.org/10.1038/nmat4064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4064

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing