Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly active oxide photocathode for photoelectrochemical water reduction

Abstract

A clean and efficient way to overcome the limited supply of fossil fuels and the greenhouse effect is the production of hydrogen fuel from sunlight and water through the semiconductor/water junction of a photoelectrochemical cell, where energy collection and water electrolysis are combined into a single semiconductor electrode. We present a highly active photocathode for solar H2 production, consisting of electrodeposited cuprous oxide, which was protected against photocathodic decomposition in water by nanolayers of Al-doped zinc oxide and titanium oxide and activated for hydrogen evolution with electrodeposited Pt nanoparticles. The roles of the different surface protection components were investigated, and in the best case electrodes showed photocurrents of up to −7.6 mA cm−2 at a potential of 0 V versus the reversible hydrogen electrode at mild pH. The electrodes remained active after 1 h of testing, cuprous oxide was found to be stable during the water reduction reaction and the Faradaic efficiency was estimated to be close to 100%.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the energy band positions for the semiconductors of the multilayer photocathode and redox levels of the involved chemical reactions.
Figure 2: The photoelectrochemical response for the bare and surface-protected electrode.
Figure 3: The surface-protected Cu2O electrode.
Figure 4: Cyclic voltammetry of the bare and surface-protected Cu2O electrode.
Figure 5: Contour plots for the XPS signals of Zn, Pt and Ti from the barrier layer.

Similar content being viewed by others

References

  1. Khaselev, O. & Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

    Article  CAS  Google Scholar 

  2. Aharon-Shalom, E. & Heller, A. Efficient p-InP(Rh-H alloy) and p-InP(Re–H alloy) hydrogen evolving photocathodes. J. Electrochem. Soc. 129, 2865–2866 (1982).

    Article  CAS  Google Scholar 

  3. Marsen, B., Cole, B. & Miller, E. L. Photoelectrolysis of water using thin copper gallium diselenide electrodes. Sol. Energy Mater. Sol. Cells 92, 1054–1058 (2008).

    Article  CAS  Google Scholar 

  4. Fernandez, A. M. et al. Photoelectrochemical characterization of the Cu(In,Ga)S2 thin film prepared by evaporation. Sol. Energy Mater. Sol. Cells 85, 251–259 (2005).

    Article  CAS  Google Scholar 

  5. Hara, M. et al. Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. 357–358 (1998).

  6. de Jongh, P. E., Vanmaekelbergh, D. & Kelly, J. J. Photoelectrochemistry of electrodeposited Cu2O. J. Electrochem. Soc. 147, 486–489 (2000).

    Article  CAS  Google Scholar 

  7. Siripala, W., Ivanovskaya, A., Jaramillo, T. F., Baeck, S. H. & McFarland, E. W. A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Sol. Energy Mater. Sol. Cells 77, 229–237 (2003).

    Article  CAS  Google Scholar 

  8. Hu, C. C., Nian, J. N. & Teng, H. Electrodeposited p-type Cu2O as photocatalyst for H-2 evolution from water reduction in the presence of WO3. Sol. Energy Mater. Sol. Cells 92, 1071–1076 (2008).

    Article  CAS  Google Scholar 

  9. Nian, J. N., Hu, C. C. & Teng, H. Electrodeposited p-type Cu2O for H-2 evolution from photoelectrolysis of water under visible light illumination. Int. J. Hydrog. Energy 33, 2897–2903 (2008).

    Article  CAS  Google Scholar 

  10. Barreca, D. et al. The potential of supported Cu2O and CuO nanosystems in photocatalytic H-2 production. ChemSusChem 2, 230–233 (2009).

    Article  CAS  Google Scholar 

  11. Morales, J. et al. Electrodeposition of Cu2O: An excellent method for obtaining films of controlled morphology and good performance in Li-ion batteries. Electrochem. Solid State Lett. 8, A159–A162 (2005).

    Article  CAS  Google Scholar 

  12. Lee, Y. H. et al. Fabrication and characterization of Cu2O nanorod arrays and their electrochemical performance in Li-ion batteries. Electrochem. Solid State Lett. 9, A207–A210 (2006).

    CAS  Google Scholar 

  13. Bijani, S. et al. Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries. Thin Solid Films 515, 5505–5511 (2007).

    Article  CAS  Google Scholar 

  14. Katayama, J., Ito, K., Matsuoka, M. & Tamaki, J. Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition. J. Appl. Electrochem. 34, 687–692 (2004).

    Article  CAS  Google Scholar 

  15. Akimoto, K. et al. Thin film deposition of Cu2O and application for solar cells. Sol. Energy 80, 715–722 (2006).

    Article  CAS  Google Scholar 

  16. Jeong, S. S., Mittiga, A., Salza, E., Masci, A. & Passerini, S. Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochim. Acta 53, 2226–2231 (2008).

    Article  CAS  Google Scholar 

  17. Cui, J. B. & Gibson, U. J. A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells. J. Phys. Chem. C 114, 6408–6412 (2010).

    Article  CAS  Google Scholar 

  18. Graetzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  Google Scholar 

  19. de Jongh, P. E., Vanmaekelbergh, D. & Kelly, J. J. Cu2O: Electrodeposition and characterization. Chem. Mater. 11, 3512–3517 (1999).

    Article  CAS  Google Scholar 

  20. Sculfort, J. L., Guyomard, D. & Herlem, M. Photoelectrochemical characterization of the p-Cu2O-non aqueous electrolyte junction. Electrochim. Acta 29, 459–465 (1984).

    Article  CAS  Google Scholar 

  21. Engel, C. J., Polson, T. A., Spado, J. R., Bell, J. M. & Fillinger, A. Photoelectrochemistry of porous p-Cu2O films. J. Electrochem. Soc. 155, F37–F42 (2008).

    Article  CAS  Google Scholar 

  22. George, S. M. Atomic layer deposition: An overview. Chem. Rev. 110, 111–131 (2010).

    Article  CAS  Google Scholar 

  23. Hwang, Y. J., Boukai, A. & Yang, P. High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 9, 410–415 (2009).

    Article  CAS  Google Scholar 

  24. Shan, C. X., Hou, X. H. & Choy, K. L. Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition. Surf. Coat. Technol. 202, 2399–2402 (2008).

    Article  CAS  Google Scholar 

  25. Guidi, F. et al. Electrochemical anticorrosion performance evaluation of Al2O3 coatings deposited by MOCVD on an industrial brass substrate. Electrochim. Acta 50, 4609–4614 (2005).

    Article  CAS  Google Scholar 

  26. Du, X. H., Zhang, K., Holland, K., Tombler, T. & Moskovits, M. Chemical corrosion protection of optical components using atomic layer deposition. Appl. Opt. 48, 6470–6474 (2009).

    Article  CAS  Google Scholar 

  27. Galliano, P., De Damborenea, J. J., Pascual, M. J. & Duran, A. Sol–gel coatings on 316L steel for clinical applications. J. Sol–Gel Sci. Technol. 13, 723–727 (1998).

    Article  CAS  Google Scholar 

  28. Heller, A. Hydrogen-evolving solar cells. Science 223, 1141–1148 (1984).

    Article  CAS  Google Scholar 

  29. Standridge, S. D., Schatz, G. C. & Hupp, J. T. Toward plasmonic solar cells: Protection of silver nanoparticles via atomic layer deposition of TiO2 . Langmuir 25, 2596–2600 (2009).

    Article  CAS  Google Scholar 

  30. Elam, J. W., Routkevitch, D. & George, S. M. Properties of ZnO/Al2O3 alloy films grown using atomic layer deposition techniques. J. Electrochem. Soc. 150, G339–G347 (2003).

    Article  CAS  Google Scholar 

  31. Agashe, C. et al. Efforts to improve carrier mobility in radio frequency sputtered aluminium doped zinc oxide films. J. Appl. Phys. 95, 1911–1917 (2004).

    Article  CAS  Google Scholar 

  32. Lee, D-J. et al. Structural and electrical properties of atomic layer deposited Al–doped ZnO films. Adv. Funct. Mater. 21, 448–455 (2011).

    Article  CAS  Google Scholar 

  33. Yasomanee, J. P. & Bandara, J. Multi-electron storage of photoenergy using Cu2O–TiO2 thin film photocatalyst. Sol. Energy Mater. Sol. Cells 92, 348–352 (2008).

    Article  CAS  Google Scholar 

  34. Xiong, L. B. et al. Visible-light energy storage by Ti3+ in TiO2/Cu2O bilayer film. Chem. Lett. 38, 1154–1155 (2009).

    Article  CAS  Google Scholar 

  35. O’Regan, B., Grätzel, M. & Fitzmaurice, D. Optical electrochemistry I: Steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode. Chem. Phys. Lett. 183, 89–93 (1991).

    Article  Google Scholar 

  36. Howe, R. F. & Gratzel, M. EPR observation of trapped electrons in colloidal titanium dioxide. J. Phys. Chem. 89, 4495–4499 (1985).

    Article  CAS  Google Scholar 

  37. Kaise, M. et al. Electron spin resonance studies of photocatalytic interface reactions of suspended M/TiO2 (M=Pt, Pd, Ir, Rh, Os, or Ru) with alcohol and acetic acid in aqueous media. Langmuir 10, 1345–1347 (1994).

    Article  CAS  Google Scholar 

  38. Nadesalingam, M. P. et al. Effect of vacuum annealing on the surface chemistry of electrodeposited copper(I) oxide layers as probed by positron annihilation induced auger electron spectroscopy. Langmuir 23, 1830–1834 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 227179 (‘NanoPEC’). We would also like to thank the Swiss Federal Office of Energy (Project number 102326, PECHouse) and the Energy Center at EPFL for financial support. We acknowledge N. Xanthopoulos from the Interdisciplinary Centre for Electron Microscopy (CIME) at EPFL for helping in the XPS characterization. E.T. would also like to thank A. Martinson at Argonne National Laboratory for helpful discussions about aluminium-doped zinc oxide synthesized by ALD.

Author information

Authors and Affiliations

Authors

Contributions

A.P. and E.T. designed the experiments. A.P. carried out electrodeposition, PEC measurements, SEM and XRD. ALD was carried out by E.T. Faradaic efficiency measurements were carried out by K.S. XPS was carried out by V.L. M.G. supervised the project. All of the authors discussed and analysed the data.

Corresponding author

Correspondence to Elijah Thimsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1486 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paracchino, A., Laporte, V., Sivula, K. et al. Highly active oxide photocathode for photoelectrochemical water reduction. Nature Mater 10, 456–461 (2011). https://doi.org/10.1038/nmat3017

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3017

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing