Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers

Abstract

The ability to precisely control the thermal conductivity (κ) of a material is fundamental in the development of on-chip heat management or energy conversion applications. Nanostructuring permits a marked reduction of κ of single-crystalline materials, as recently demonstrated for silicon nanowires. However, silicon-based nanostructured materials with extremely low κ are not limited to nanowires. By engineering a set of individual phonon-scattering nanodot barriers we have accurately tailored the thermal conductivity of a single-crystalline SiGe material in spatially defined regions as short as 15 nm. Single-barrier thermal resistances between 2 and 4×10−9 m2 K W−1 were attained, resulting in a room-temperature κ down to about 0.9 W m−1 K−1, in multilayered structures with as little as five barriers. Such low thermal conductivity is compatible with a totally diffuse mismatch model for the barriers, and it is well below the amorphous limit. The results are in agreement with atomistic Green’s function simulations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample structure.
Figure 2: Thermal response of the Ge nanodot multilayers.
Figure 3: Heterodyne picosecond thermoreflectance set-up.

Similar content being viewed by others

References

  1. Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003).

    Article  CAS  Google Scholar 

  2. Shakouri, A. Nanoscale thermal transport and microrefrigerators on a chip. Proc. IEEE 94, 1613–1638 (2006).

    Article  CAS  Google Scholar 

  3. Chowdhury, I. et al. On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotech. 4, 235–238 (2008).

    Article  Google Scholar 

  4. Zeng, G. et al. Eras: InGaAs/InGaAlAs superlattice thin-film power generator array. Appl. Phys. Lett. 88, 113502 (2006).

    Article  Google Scholar 

  5. Kim, W. et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).

    Article  Google Scholar 

  6. Lee, S. M., Cahill, D. G. & Venkatasubramanian, R. Thermal conductivity of Si–Ge superlattices. Appl. Phys. Lett. 70, 2957–2959 (1997).

    Article  CAS  Google Scholar 

  7. Lee, M. L. & Venkatasubramanian, R. Effect of nanodot areal density and period on thermal conductivity in SiGe/Si nanodot superlattices. Appl. Phys. Lett. 92, 053112 (2008).

    Article  Google Scholar 

  8. Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351–353 (2007).

    Article  CAS  Google Scholar 

  9. Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).

    Article  CAS  Google Scholar 

  10. Swartz, E. T. & Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).

    Article  Google Scholar 

  11. Highland, M. et al. Ballistic-phonon heat conduction at the nanoscale as revealed by time-resolved X-ray diffraction and time-domain thermoreflectance. Phys. Rev. B 76, 075337 (2007).

    Article  Google Scholar 

  12. Schmidt, O. G., Denker, U., Christiansen, S. & Ernst, F. Composition of self-assembled Ge/Si islands in single and multiple layers. Appl. Phys. Lett. 81, 2614–2616 (2002).

    Article  CAS  Google Scholar 

  13. Liu, J. L. et al. Cross-plane thermal conductivity of self-assembled Ge quantum dot superlattices. Phys. Rev. B 67, 165333 (2003).

    Article  Google Scholar 

  14. Bao, Y. et al. Electrical and thermal conductivity of Ge/Si quantum dot superlattices. J. Electrochem. Soc. 152, G432–G435 (2005).

    Article  CAS  Google Scholar 

  15. Alvarez-Quintana, J. et al. Cross-plane thermal conductivity reduction of vertically uncorrelated Ge/Si quantum dot superlattices. Appl. Phys. Lett. 93, 013112 (2008).

    Article  Google Scholar 

  16. Dilhaire, S., Rampnoux, J. M., Claeys, W. & Rossignol, C. Optical heterodyne sampling device. Patent WO/2007/045773 (2006).

  17. Liu, X. et al. High thermal conductivity of a hydrogenated amorphous silicon film. Phys. Rev. Lett. 102, 035901 (2009).

    Article  Google Scholar 

  18. Ezzahri, Y. et al. Coherent phonons in Si/SiGe superlattices. Phys. Rev. B 75, 195309 (2007).

    Article  Google Scholar 

  19. Stevens, R. J., Smith, A. N. & Norris, P. M. Signal analysis and characterization of experimental setup for the transient thermoreflectance technique. Rev. Sci. Instrum. 77, 084901 (2006).

    Article  Google Scholar 

  20. Huxtable, S. et al. Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nature Mater. 3, 298–301 (2004).

    Article  CAS  Google Scholar 

  21. Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).

    Article  CAS  Google Scholar 

  22. Schmidt, A. J., Chen, X. & Chen, G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump–probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008).

    Article  Google Scholar 

  23. Ezzahri, Y. et al. Cross-plan Si/SiGe superlattice acoustic and thermal properties measurement by picosecond ultrasonics. J. Appl. Phys. 101, 013705 (2007).

    Article  Google Scholar 

  24. Antonelli, G. A., Perrin, B., Daly, B. C. & Cahill, D. G. Characterization of mechanical and thermal properties using ultrafast optical metrology. MRS Bull. 31, 607–613 (2006).

    Article  CAS  Google Scholar 

  25. Koh, Y. K. et al. Comparison of the 3 omega method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. J. Appl. Phys. 105, 054303 (2009).

    Article  Google Scholar 

  26. Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958–14973 (1998).

    Article  CAS  Google Scholar 

  27. Mingo, N. Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68, 113308 (2003).

    Article  Google Scholar 

  28. Cahill, D. G., Katiyar, M. & Abelson, J. R. Thermal conductivity of a-Si:H thin films. Phys. Rev. B 50, 6077–6081 (1994).

    Article  CAS  Google Scholar 

  29. Boukai, A. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008).

    Article  CAS  Google Scholar 

  30. Vining, C. B. Desperately seeking silicon. Nature 451, 132–133 (2008).

    Article  CAS  Google Scholar 

  31. Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008).

    Article  CAS  Google Scholar 

  32. Simkin, M. V. & Mahan, G. D. Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84, 927–930 (2000).

    Article  CAS  Google Scholar 

  33. Venkatasubramanian, R. Lattice thermal conductivity reduction and phonon localizationlike behaviour in superlattice structures. Phys. Rev. B 61, 3091–3097 (2000).

    Article  CAS  Google Scholar 

  34. Kleint, C. A. et al. Thermal conductivity in strain symmetrized Si/Ge superlattices on Si(111). Appl. Phys. Lett. 83, 4184–4186 (2003).

    Article  Google Scholar 

  35. Abeles, B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 131, 1906–1911 (1963).

    Article  Google Scholar 

  36. Mingo, N. et al. Nanoparticle-in-alloy approach to efficient thermoelectrics: Silicides in SiGe. Nano Lett. 9, 711–715 (2009).

    Article  CAS  Google Scholar 

  37. Cahill, D. G. & Pohl, R. O. Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B 35, 4067–4073 (1987).

    Article  CAS  Google Scholar 

  38. Mingo, N. & Yang, L. Phonon transport in nanowires coated with an amorphous material: An atomistic green’s function approach. Phys. Rev. B 68, 245406 (2003).

    Article  Google Scholar 

  39. Zhang, W., Mingo, N. & Fisher, T. S. Simulation of phonon transport across a non-polar nanowire junction using an atomistic green’s function method. Phys. Rev. B 76, 195429 (2007).

    Article  Google Scholar 

  40. Savic, I., Mingo, N. & Stewart, D. A. Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: Is localization observable? Phys. Rev. Lett. 101, 165502 (2008).

    Article  Google Scholar 

  41. Tersoff, J. New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56, 632–635 (1986).

    Article  CAS  Google Scholar 

  42. Skye, A. & Schelling, P. K. Thermal resistivity of Si–Ge alloys by molecular-dynamics simulation. J. Appl. Phys. 103, 113524 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the EU (Nano-thermoelectrics, IRG 39302), ANR (Thermaescape, ANR-06-NANO-054-01, Accatone), (EThNA, ANR-06-NANO-020), (OCTE, ANR-06-BLAN-129), the Conseil Régional d’Aquitaine (projet Photon et Phonons, 2007), the DFG (SPP1386, RA 1634/5-1), the European Regional Development Fund (n. 4212/09-13) and the State of Saxony. We acknowledge A. Hiess, Ch. Mickel, G. Scheider, T. Dienel, C. C. Bof Bufon, S. Harazim, D. Grimm, S. Baunack and B. Eichler for experimental assistance, B. Rellinghaus for access to the Tecnai T20 TEM and A. Rotondi (Univ. Pavia) for insightful discussions on error propagation in the 3ω method measurements.

Author information

Authors and Affiliations

Authors

Contributions

G.P. and J.M.R. carried out the HPTR measurements and analysis; M.S., U.D. and O.G.S. were responsible for the sample growth; G.S. and M.P. metallized the samples for HPTR. F.P. and M.S. carried out AFM measurements; F.P., P.C. and A.R. carried out the 3ω measurements and analysis, on a set-up realized by A.J.; P.C., F.P., J.S. and I.M. processed and characterized the samples for 3ω measurements; C.D. carried out the TEM measurements; I.S. carried out the Green’s function calculation. I.S., S.W. and N.M. developed the theory. A.R., S.D. and N.M. coordinated the work and wrote the paper.

Corresponding authors

Correspondence to A. Rastelli, S. Dilhaire or N. Mingo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1414 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pernot, G., Stoffel, M., Savic, I. et al. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nature Mater 9, 491–495 (2010). https://doi.org/10.1038/nmat2752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing