Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The flexible genome

Abstract

A principal assumption underlying contemporary genetic analysis is that the normal function of a gene can be inferred directly from its mutant phenotype. The interactivity among genes that is now being revealed calls this assumption into question and indicates that there might be considerable flexibility in the capacity of the genome to respond to diverse conditions. The reservoir for much of this flexibility resides in the nonspecificity and malleability of gene action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic epistasis.
Figure 2: Gene network interactions.

Similar content being viewed by others

References

  1. Allen, G. E. Thomas Hunt Morgan: The Man and His Science (Princeton Univ. Press, Princeton, 1978).

    Google Scholar 

  2. Kohler, R. E. Lords of the Fly: Drosophila Genetics and the Experimental Life (Chicago Univ. Press, Chicago, 1994).

    Google Scholar 

  3. Lawrence, P. Science or alchemy? Nature Rev. Genet. 2, 139–142 (2001).

    Article  CAS  Google Scholar 

  4. Judson, J. F. The Eighth Day of Creation (Simon & Schuster, New York, 1979).

    Google Scholar 

  5. Jennings, H. S. Behavior of the Lower Organisms (Indiana Univ. Press, Bloomington, 1906).

    Google Scholar 

  6. Goldschmidt, R. Physiological Genetics (McGraw–Hill, New York, 1938).

    Google Scholar 

  7. Weiss, P. in Analysis of Development (eds Willier, B., Weiss, P. & Hamburger, V.) 346–401 (W. B. Saunders, Philadelphia, 1955).

    Google Scholar 

  8. Morgan, T. H. Genetics and Embryology (Columbia Univ. Press, New York, 1934).

    Google Scholar 

  9. Wright, T. R. F. The genetics of embryogenesis in Drosophila. Adv. Genet. 15, 261–395 (1970).

    Article  CAS  Google Scholar 

  10. Hall, J. C. in Flexibility and Constraint in Behavioral Systems (eds Greenspan, R. J. & Kyriacou, C. P.) 15–28 (John Wiley & Sons, New York, 1994).

    Google Scholar 

  11. Pflugfelder, G. O. Genetic lesions in Drosophila behavioural mutants. Behav. Brain Res. 95, 3–15 (1998).

    Article  CAS  Google Scholar 

  12. Shaffer, P. Amadeus (Harper & Row, New York, 1980).

    Google Scholar 

  13. Lawrence, P. A. The Making of a Fly (Blackwell Science, Oxford, 1992).

    Google Scholar 

  14. Beadle, G. W. & Tatum, E. L. Genetic control of biochemical reactions in Neurospora. Proc. Natl Acad. Sci. USA 27, 499–506 (1941).

    Article  CAS  Google Scholar 

  15. Wood, W. B. & Edgar, R. S. Building a bacterial virus. Sci. Am. 217, 60–74 (1967).

    Article  Google Scholar 

  16. Nusslein-Volhard, C., Frohnhofer, H. G. & Lehmann, R. Determination of anteroposterior polarity in Drosophila. Science 238, 1675–1681 (1987).

    Article  CAS  Google Scholar 

  17. Jan, Y. N. & Jan, L. Y. Genetic control of cell fate specification in Drosophila peripheral nervous system. Annu. Rev. Genet. 28, 373–393 (1994).

    Article  CAS  Google Scholar 

  18. Leptin, M. Gastrulation in Drosophila: the logic and the cellular mechanisms. EMBO J. 18, 3187–3192 (1999).

    Article  CAS  Google Scholar 

  19. Tully, T., Preat, T., Boynton, S. C. & Del Vecchio, M. Genetic dissection of consolidated memory in Drosophila. Cell 79, 35–47 (1994).

    Article  CAS  Google Scholar 

  20. Simon, M. A., Botwell, D. L., Dodson, G. S., Laverty, T. R. & Rubin, G. M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signalling by the sevenless protein tyrosine kinase. Cell 67, 701–716 (1991).

    Article  CAS  Google Scholar 

  21. O'Kane, C. & Gehring, W. J. Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl Acad. Sci. USA 84, 9123–9127 (1987).

    Article  CAS  Google Scholar 

  22. Rorth, P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl Acad. Sci. USA 93, 12418–12422 (1996).

    Article  CAS  Google Scholar 

  23. Gerlai, R. Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci. 19, 177–181 (1996).

    Article  CAS  Google Scholar 

  24. de Belle, J. S. & Heisenberg, M. Expression of Drosophila mushroom body mutations in alternative genetic backgrounds: a case study of the mushroom body miniature gene (mbm). Proc. Natl Acad. Sci. USA 93, 9875–9880 (1996).

    Article  CAS  Google Scholar 

  25. Osborne, K. A. et al. Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277, 834–836 (1997).

    Article  CAS  Google Scholar 

  26. Greenspan, R. J. A kinder, gentler genetic analysis of behavior: dissection gives way to modulation. Curr. Opin. Neurobiol. 7, 805–811 (1997).

    Article  CAS  Google Scholar 

  27. Pereira, H. S., Macdonald, D. E., Hilliker, A. J. & Sokolowski, M. B. Chaser (Csr), a new gene affecting larval foraging behavior in Drosophila melanogaster. Genetics 141, 263–270 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Griffith, L. C., Wang, J., Zhong, Y., Wu, C. F. & Greenspan, R. J. Calcium/calmodulin-dependent protein kinase II and potassium channel subunit eag similarly affect plasticity in Drosophila. Proc. Natl Acad. Sci. USA 91, 10044–10048 (1994).

    Article  CAS  Google Scholar 

  29. Fedorowicz, G. M., Fry, J. D., Anholt, R. R. & Mackay, T. F. Epistatic interactions between smell-impaired loci in Drosophila melanogaster. Genetics 148, 1885–1891 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Clark, A. G. & Wang, L. Epistasis in measured genotypes: Drosophila P-element insertions. Genetics 147, 157–163 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Greenspan, R. J. & Tully, T. in Flexibility and Constraint in Behavioral Systems (eds Greenspan, R. J. & Kyriacou, C. P.) 65–80 (Dahlem Konferenzen, Berlin, 1994).

    Google Scholar 

  32. Cooke, J., Nowak, M. A., Boerlijst, M. & Maynard-Smith, J. Evolutionary origins and maintenance of redundant gene expression during metazoan development. Trends Genet. 13, 360–362 (1997).

    Article  CAS  Google Scholar 

  33. Misawa, H. et al. Contrasting localizations of MALS/LIN-7 PDZ proteins in brain and molecular compensation in knockout mice. J. Biol. Chem. 276, 8264–9272 (2001).

    Article  Google Scholar 

  34. Tononi, G., Sporns, O. & Edelman, G. M. Measures of degeneracy and redundancy in biological networks. Proc. Natl Acad. Sci. USA 96, 3257–3262 (1999).

    Article  CAS  Google Scholar 

  35. Edelman, G. M. in The Mindful Brain (eds Edelman, G. M. & Mountcastle, V. B.) 51–100 (MIT Press, Cambridge, Massachusetts, 1978).

    Google Scholar 

  36. Edelman, G. M. Topobiology (Basic Books, New York, 1989).

    Book  Google Scholar 

  37. Wodicka, L., Dong, H., Mittmann, M., Ho, M.-H. & Lockhart, D. J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15, 1359–1367 (1997).

    Article  CAS  Google Scholar 

  38. Futcher, B., Latter, G. I., Monardo, P., McLaughlin, C. S. & Garrels, J. I. A sampling of the yeast proteome. Mol. Cell Biol. 19, 7357–7368 (1999).

    Article  CAS  Google Scholar 

  39. Livesey, F. J., Furukawa, T., Steffen, M. A., Church, G. M. & Cepko, C. L. Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. Curr. Biol. 10, 301–310 (2000).

    Article  CAS  Google Scholar 

  40. Barkai, N & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).

    Article  CAS  Google Scholar 

  41. Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    Article  CAS  Google Scholar 

  42. Harwood, J. Styles of Scientific Thought: The German Genetics Community 1900–1933 (Chicago Univ. Press, Chicago, 1993).

    Google Scholar 

  43. Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205, 581–598 (1979).

    Article  CAS  Google Scholar 

  44. Farah, M. J. Neuropsychological inference with an interactive brain: a critique of the 'locality' assumption. Behav. Brain Sci. 17, 43–61 (1994).

    Article  Google Scholar 

  45. Dudai, Y., Jan, Y.-N., Byers, D., Quinn, W. G. & Benzer, S. dunce, a mutant of Drosophila deficient in learning. Proc. Natl Acad. Sci. USA 73, 1684–1688 (1976).

    Article  CAS  Google Scholar 

  46. Byers, D., Davis, R. L. & Kiger, J. A. Jr Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature 289, 79–81 (1981).

    Article  CAS  Google Scholar 

  47. Bellen, H. J., Gregory, B. K., Olsson, C. L. & Kiger, J. A. Jr Two Drosophila learning mutants, dunce and rutabaga, provide evidence of a maternal role for cAMP in embryogenesis. Dev. Biol. 121, 432–444 (1987).

    Article  CAS  Google Scholar 

  48. Boynton, S. & Tully, T. latheo, a new gene involved in associative learning and memory in Drosophila melanogaster. Genetics 131, 655–672 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pinto, S. et al. latheo encodes a subunit of the origin recognition complex and disrupts neuronal proliferation and adult olfactory memory when mutant. Neuron 23, 45–54 (1999).

    Article  CAS  Google Scholar 

  50. Heisenberg, M., Wonneberger, R. & Wolf, R. optomotor-blindH31 — a Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. A 124, 287–296 (1978).

    Article  Google Scholar 

  51. Pflugfelder, G. O. et al. The lethal(1)optomotor-blind gene of Drosophila melanogaster is a major organizer of optic lobe development: isolation and characterization of the gene. Proc. Natl Acad. Sci. USA 89, 1199–1203 (1992).

    Article  CAS  Google Scholar 

  52. Kopp, A. & Duncan, I. Control of cell fate and polarity in the adult abdominal segments of Drosophila by optomotor-blind. Development 124, 3715–3726 (1997).

    CAS  PubMed  Google Scholar 

  53. Wu, C.-F., Ganetzky, B., Jan, L. Y., Jan, Y.-N. & Benzer, S. A Drosophila mutant with a temperature-sensitive block in nerve conduction. Proc. Natl Acad. Sci. USA 75, 4047–4051 (1978).

    Article  CAS  Google Scholar 

  54. Lee, C. G., Chang, K. A., Kuroda, M. I. & Hurwitz, J. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation. EMBO J. 16, 2671–2681 (1997).

    Article  CAS  Google Scholar 

  55. Kernan, M. J., Kuroda, M. I., Kreber, R., Baker, B. S. & Ganetzky, G. napts, a mutation affecting sodium channel activity in Drosophila, is an allele of mle, a regulator of X chromosome transcription. Cell 66, 949–959 (1991).

    Article  CAS  Google Scholar 

  56. Pak, W. L., Grossfield, W. J. & Arnold, K. S. Mutants of the visual pathway of Drosophila melanogaster. Nature 227, 518–520 (1970).

    Article  CAS  Google Scholar 

  57. Bloomquist, B. T. et al. Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell 54, 723–733 (1988).

    Article  CAS  Google Scholar 

  58. Dushay, M. S., Rosbash, M. & Hall, J. C. The disconnected visual system mutations in Drosophila melanogaster drastically disrupt circadian rhythms. J. Biol. Rhythms 4, 1–27 (1989).

    Article  CAS  Google Scholar 

  59. Riesgo-Escovar, J., Raha, D. & Carlson, J. R. Requirement for a phospholipase C in odor response: overlap between olfaction and vision in Drosophila. Proc. Natl Acad. Sci. USA 92, 2864–2868 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Helpful comments on the manuscript were provided by C. Deutsch, G. Edelman, J. Gally, J. Hall and F. Jones, for which I am very grateful. I thank K. McCarthy for assistance with Latin grammar.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Notch

Ras

dunce

latheo

optomotor-blind

no-action-potential

no-receptor-potential-A

ENCYCLOPEDIA OF LIFE SCIENCES

Morgan, Thomas Hunt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenspan, R. The flexible genome. Nat Rev Genet 2, 383–387 (2001). https://doi.org/10.1038/35072018

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35072018

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing