Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origin of ultra-high-energy γ-rays from Cygnus X-3 and related sources

Abstract

Ultra-high-energy (UHE) γ-ray emission from Cygnus X-3 (refs 1,2) and the several other binary X-ray sources has been observed at γ-ray energies ≥1015 eV (refs 3–5). Also, collisionless shocks are expected to form in accretion flows onto neutron stars or black holes6. Here, therefore, we consider the diffusive shock acceleration of ions as the mechanism responsible for the γ-ray emission observed. The shock acceleration time can under reasonable assumptions be sufficiently short to allow acceleration of ions to energies near 1016 eV. We propose that the subsequent proton–proton (p–p) collisions and photodissociation of 4He can produce a flux of neutrons that escapes from the acceleration site despite the high magnetic fields (108 G). These neutrons, by interacting with the binary companion7,8, produce the observed UHE radiation. Radiation at such energies might be a common property of accreting binaries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Samorski, M. & Stamm, W. Astrophys. J. Lett. 268, L17–L21 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Lloyd-Evans, J. et al. Nature 305, 784–787 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Baltrusaitis, R. M. et al. Astrophys. J. Lett. 293, L69–L72 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Protheroe, R. J., Clay, R. W. & Gerhardy, P. R. Astrophys. J. Lett. 280, L47–L50 (1984).

    Article  ADS  Google Scholar 

  5. Protheroe, R. J. & Clay, R. W. Nature 315, 205–207 (1985).

    Article  ADS  Google Scholar 

  6. Hawley, J. F., Smarr, L. L. & Wilson, J. R. Astrophys. J. Suppl. 55, 211–246 (1984).

    Article  ADS  Google Scholar 

  7. Vestrand, W. T. & Eichler, D. Astrophys. J. 261, 251–258 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Hillas, A. M. Nature 312, 50–51 (1984).

    Article  ADS  Google Scholar 

  9. Eichler, D. & Vestrand, W. T. Nature 307, 613–614 (1984).

    Article  ADS  Google Scholar 

  10. Chanmugam, G. & Brecher, K. Nature 313, 767–768 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Krymsky, G. F. Dokl. Akad. Nauk SSSR 234, 1306–1308 [Soviet Phys. Dokl. Engl. transl. 22, 327–328 (1977)].

    ADS  Google Scholar 

  12. Axford, W. I., Leer, E. & Skadron, G. Proc. 15th int. Cosmic Ray Conf., Plovdiv 11, 132–137 (1977).

    ADS  Google Scholar 

  13. Bell, A. R. Mon. Not. R. astr. Soc. 182, 147–156 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Blandford, R. D. & Ostriker, J. P. Astrophys. J. Lett. 221, L29–L32 (1978).

    Article  ADS  Google Scholar 

  15. Lee, M. A. Rev. Geophys. Space Phys. 21, 324–338 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Ellison, D. C. J. geophys. Res. 90, 29–38 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Ellison, D. C. & Ramaty, R. Astrophys. J. 298, 400–408 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Axford, W. I. Proc. 17th int. Cosmic Ray Conf., Paris 12, 155–203 (1981).

    ADS  Google Scholar 

  19. Ellison, D. C. & Eichler, D. Phys. Rev. Lett. 55, 2735–2738 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Eichler, D. & Wiita, P. J. Nature 274, 38–39 (1978).

    Article  ADS  Google Scholar 

  21. Stephens, S. A. & Verma, R. P. Nature 308, 828–830 (1984).

    Article  ADS  Google Scholar 

  22. Hillas, A. M. A. Rev. Astr. Astrophys. 22, 425–444 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Eichler, D. & Vestrand, W. T. Proc. 19th int. Cosmic Ray Conf., La Jolla 1, 115–118 (1985).

    ADS  Google Scholar 

  24. Stecker, F. W., Harding, A. K. & Barnard, J. J. Nature 316, 418–420 (1985).

    Article  ADS  Google Scholar 

  25. White, N. E. & Holt, S. S. Astrophys. J. 257, 318–337 (1982).

    Article  ADS  CAS  Google Scholar 

  26. Stecker, F. W. Phys. Rev. Lett. 21, 1016–1018 (1968).

    Article  ADS  CAS  Google Scholar 

  27. Protheroe, R. J. Nature 310, 296–298 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Kinsey, J. H. Astrophys. J. 158, 295–302 (1969).

    Article  ADS  Google Scholar 

  29. Ellison, D. C. & Eichler, D. Astrophys. J. 286, 691–701 (1984).

    Article  ADS  CAS  Google Scholar 

  30. Gaisser, T. K. & Yodh, G. B. A. Rev. nucl. part. Sci. 30, 475–542 (1980).

    Article  ADS  CAS  Google Scholar 

  31. Marshak, M. L. et al. Phys. Rev. Lett. 54, 2079–2082 (1985).

    Article  ADS  CAS  Google Scholar 

  32. Battistoni, G. et al. Phys. Lett. 155B, 465–468 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazanas, D., Ellison, D. Origin of ultra-high-energy γ-rays from Cygnus X-3 and related sources. Nature 319, 380–382 (1986). https://doi.org/10.1038/319380a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319380a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing