Skip to main content
Log in

Basal Glycogenolysis in Mouse Skeletal Muscle: In Vitro Model Predicts In Vivo Fluxes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A previously published mammalian kinetic model of skeletal muscle glycogenolysis, consisting of literature in vitro parameters, was modified by substituting mouse specific Vmax values. The model demonstrates that glycogen breakdown to lactate is under ATPase control. Our criteria to test whether in vitro parameters could reproduce in vivo dynamics was the ability of the model to fit phosphocreatine (PCr) and inorganic phosphate (Pi) dynamic NMR data from ischemic basal mouse hindlimbs and predict biochemically-assayed lactate concentrations. Fitting was accomplished by optimizing four parameters - the ATPase rate coefficient, fraction of activated glycogen phosphorylase, and the equilibrium constants of creatine kinase and adenylate kinase (due to the absence of pH in the model). The optimized parameter values were physiologically reasonable, the resultant model fit the [PCr] and [Pi] timecourses well, and the model predicted the final measured lactate concentration. This result demonstrates that additional features of in vivo enzyme binding are not necessary for quantitative description of glycogenolytic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asllani, I., Shankland, E., Pratum, T., and Kushmerick, M. J Magn Reson, 139,(1999) 213.

    Google Scholar 

  • Blei, M. L., Conley, K. E., and Kushmerick, M. J. J Physiol (Lond),465,(1993) 203.

    Google Scholar 

  • Chesley, A., Heigenhauser, G. J., and Spriet, L. L. Am J Physiol,270,(1996) E328.

    Google Scholar 

  • Knull, H. R., and Walsh, J. L. Curr Top Cell Regul,33,(1992) 15.

    Google Scholar 

  • Lambeth, M. J., and Kushmerick, M. J. Annals of Biomedical Engineering, 30,(2002).

  • Lindena, J., Sommerfeld, U., Hopfel, C., and Trautschold, I. J Clin Chem Clin Biochem,24,(1986) 35.

    Google Scholar 

  • MacDonald, M. J., and Marshall, L. K. Mol Cell Biochem,220,(2001) 117.

    Google Scholar 

  • Meyer, R. A., and Foley, J. M., In (J. T. S. Loring G. Rowell, ed.), Exercise: regulation and integration of multiple systems, Vol. 12,. Oxford University Press, Bethesda, Md, 1996.

    Google Scholar 

  • Parkhouse, W. S. Can J Physiol Pharmacol, 70,(1992) 150.

    Google Scholar 

  • Petell, J. K., Marshall, N. A., and Lebherz, H. G. Int J Biochem, 16,(1984) 61.

    Google Scholar 

  • Reichmann, H., and Pette, D. Muscle Nerve,7,(1984) 121.

    Google Scholar 

  • Riol-Cimas, J. M., and Melendez-Hevia, E. Int J Biochem, 18,(1986) 853.

    Google Scholar 

  • Teusink, B., Passarge, J., Reijenga, C. A., Esgalhado, E., van der Weijden, C. C., Schepper, M., Walsh, M. C., Bakker, B. M., van Dam, K., Westerhoff, H. V., and Snoep, J. L. Eur J Biochem,267,(2000) 5313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Kushmerick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambeth, M.J., Kushmerick, M.J., Marcinek, D.J. et al. Basal Glycogenolysis in Mouse Skeletal Muscle: In Vitro Model Predicts In Vivo Fluxes. Mol Biol Rep 29, 135–139 (2002). https://doi.org/10.1023/A:1020305208137

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020305208137

Keywords

Navigation