Skip to main content
Log in

Polyoxometalates for continuous power generation by atmospheric humidity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atmospheric humidity is a sustainable low-value energy widely existing in natural environment, which is a promising candidate to solve the noncontinuous and low efficiency of low-value energy power generation. Here the mono-substituted Dawson-type polyoxometalates are constructed to be highly dispersed organic ammonium-polyoxoanion clusters and are assembled into thin films power generators with micropores, working in atmospheric humidity. The optimal polyoxometalates generator with the thickness of 7.2 µm and the area of 0.36 cm2 produces a voltage of 0.68 V and a current density of 19.5 µA·cm−2 under simulated natural environment, and works continuously and stably under almost all-natural environments (humidity 10%–90%). The highly dispersed polyoxometalate nanoclusters can form microporous in polyoxometalate films to effectively absorb atmospheric humidity and spontaneously form distribution gradient of water, which is the structural basis of power generation. The continuous power generation may be maintained by the effective adsorption and utilization of H2O, the huge electrostatic field of organic ammonium-polyoxoanion clusters, and the reasonably designed polyoxometalates containing inorganic small ions with high mobility. It is the first humidity generator designed with polyoxometalates, which may provide a new research direction for polyoxometalates in sustainable utilization of low-value energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong, H. X.; Yang, X. Y.; Cui, H.; Zheng, D.; Wen, H. Y.; Huang, R. Y.; Liu, L. Q.; Duan, J. L.; Tang, Q. W. Self-powered seesaw structured spherical buoys based on a hybrid triboelectric–electromagnetic nanogenerator for sea surface wireless positioning. Energy Environ. Sci. 2022, 15, 621–632.

    Article  Google Scholar 

  2. Wang, T.; Ji, T.; Chen, W. L.; Li, X. H.; Guan, W.; Geng, Y.; Wang, X. L.; Li, Y. G.; Kang, Z. H. Polyoxometalate film simultaneously converts multiple low-value all-weather environmental energy to electricity. Nano Energy 2020, 68, 104349.

    Article  CAS  Google Scholar 

  3. Guerra, O. J.; Zhang, J. Z.; Eichman, J.; Denholm, P.; Kurtz, J.; Hodge, B. M. The value of seasonal energy storage technologies for the integration of wind and solar power. Energy Environ. Sci. 2020, 13, 1909–1922.

    Article  CAS  Google Scholar 

  4. Davids, P. S.; Kirsch, J.; Starbuck, A.; Jarecki, R.; Shank, J.; Peters, D. Electrical power generation from moderate-temperature radiative thermal sources. Science 2020, 367, 1341–1345.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Zheng, Y. Y.; Han, X.; Yang, J. W.; Jing, Y. Y.; Chen, X. Y.; Li, Q. Q.; Zhang, T.; Li, G. D.; Zhu, H. T.; Zhao, H. Z. et al. Durable, stretchable, and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy Environ. Sci. 2022, 15, 2374–2385.

    Article  CAS  Google Scholar 

  6. Gao, M. Y.; Wang, P.; Jiang, L. L.; Wang, B. W.; Yao, Y.; Liu, S.; Chu, D. W.; Cheng, W. L.; Lu, Y. R. Power generation for wearable systems. Energy Environ. Sci. 2021, 14, 2114–2157.

    Article  Google Scholar 

  7. Jing, Z. X.; Zhang, J. C.; Wang, J. L.; Zhu, M. K.; Wang, X. X.; Cheng, T. H.; Zhu, J. Y.; Wang, Z. L. 3D fully-enclosed triboelectric nanogenerator with bionic fish-like structure for harvesting hydrokinetic energy. Nano Res. 2022, 15, 5098–5104.

    Article  CAS  ADS  Google Scholar 

  8. Zhang, S.; Jing, Z. X.; Wang, X. X.; Zhu, M. K.; Yu, X.; Zhu, J. Y.; Cheng, T. H.; Zhao, H. W.; Wang, Z. L. Soft-bionic-fishtail structured triboelectric nanogenerator driven by flow-induced vibration for low-velocity water flow energy harvesting. Nano Res. 2023, 16, 466–472.

    Article  CAS  ADS  Google Scholar 

  9. Gong, S.; Yap, L. W.; Zhu, B. W.; Zhai, Q. F.; Liu, Y. Y.; Lyu, Q. X.; Wang, K. X.; Yang, M. J.; Ling, Y. Z.; Lai, D. T. H. et al. Local crack-programmed gold nanowire electronic skin tattoos for in-plane multisensor integration. Adv. Mater. 2019, 31, 1903789.

    Article  CAS  Google Scholar 

  10. Sun, W. P.; Ding, Z.; Qin, Z. Y.; Chu, F. L.; Han, Q. K. Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators. Nano Energy 2020, 70, 104526.

    Article  CAS  Google Scholar 

  11. Wang, Y.; Chen, T. Y.; Sun, S. W.; Liu, X. Y.; Hu, Z. Y.; Lian, Z. H.; Liu, L.; Shi, Q. F.; Wang, H.; Mi, J. C. et al. A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy. Nano Res. 2021, 15, 3246–3253.

    Article  ADS  Google Scholar 

  12. Wang, Y.; Wang, J. Y.; Xiao, X.; Wang, S. Y.; Kien, P. T.; Dong, J. L.; Mi, J. C.; Pan, X. X.; Wang, H. F.; Xu, M. Y. Multi-functional wind barrier based on triboelectric nanogenerator for power generation, self-powered wind speed sensing and highly efficient windshield. Nano Energy 2020, 73, 104736.

    Article  CAS  Google Scholar 

  13. Bai, J. X.; Huang, Y. X.; Wang, H. Y.; Guang, T. L.; Liao, Q. H.; Cheng, H. H.; Deng, S. H.; Li, Q. K.; Shuai, Z. G.; Qu, L. T. Sunlight-coordinated high-performance moisture power in natural conditions. Adv. Mater. 2022, 34, 2103897.

    Article  CAS  Google Scholar 

  14. Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

    Article  CAS  Google Scholar 

  15. Duan, J. L.; Hu, T. Y.; Zhao, Y. Y.; He, B. L.; Tang, Q. W. Carbon-electrode-tailored all-inorganic perovskite solar cells to harvest solar and water-vapor energy. Angew. Chem., Int. Ed. 2018, 57, 5746–5749.

    Article  CAS  Google Scholar 

  16. Yang, L.; Nandakumar, D. K.; Miao, L. Q.; Suresh, L.; Zhang, D. W.; Xiong, T.; Vaghasiya, J. V.; Kwon, K. C.; Tan, S. C. Energy harvesting from atmospheric humidity by a hydrogel-integrated ferroelectric-semiconductor system. Joule 2020, 4, 176–188.

    Article  CAS  Google Scholar 

  17. Zhang, Y. X.; Nandakumar, D. K.; Tan, S. C. Digestion of ambient humidity for energy generation. Joule 2020, 4, 2532–2536.

    Article  Google Scholar 

  18. Zhang, Y. X.; Tan, S. C. Best practices for solar water production technologies. Nat. Sustain. 2022, 5, 554–556.

    Article  Google Scholar 

  19. Ding, H. Y.; Xin, Z. Q.; Yang, Y. Y.; Luo, Y. F.; Xia, K. L.; Wang, B. L.; Sun, Y. F.; Wang, J. P.; Zhang, Y. Y.; Wu, H. et al. Ultrasensitive, low-voltage operational, and asymmetric ionic sensing hydrogel for multipurpose applications. Adv. Funct. Mater. 2020, 30, 1909616.

    Article  CAS  Google Scholar 

  20. Wei, Q. M.; Ge, W. N.; Yuan, Z. C.; Wang, S. X.; Lu, C. G.; Feng, S. L.; Zhao, L.; Liu, Y. H. Moisture electricity generation: Mechanisms, structures, and applications. Nano Res. 2023, 16, 7496–7510.

    Article  ADS  Google Scholar 

  21. Wang, K. Q.; Xu, W. H.; Zhang, W.; Wang, X.; Yang, X.; Li, J. F.; Zhang, H. L.; Li, J. J.; Wang, Z. K. Bio-inspired water-driven electricity generators: From fundamental mechanisms to practical applications. Nano Res. Energy 2023, 2, e9120042.

    Article  Google Scholar 

  22. Zheng, S.; Tang, J. Y.; Lv, D.; Wang, M.; Yang, X.; Hou, C. S.; Yi, B.; Lu, G.; Hao, R. R.; Wang, M. Z. et al. Continuous energy harvesting from ubiquitous humidity gradients using liquid-infused nanofluidics. Adv. Mater. 2022, 34, 2106410.

    Article  CAS  Google Scholar 

  23. Zhou, S. Y.; Qiu, Z.; Strømme, M.; Xu, C. Solar-driven ionic power generation via a film of nanocellulose@conductive metal-organic framework. Energy Environ. Sci. 2021, 14, 900–905.

    Article  CAS  Google Scholar 

  24. Zhang, Y. X.; Yu, Z.; Qu, H.; Guo, S.; Yang, J. C.; Zhang, S. L.; Yang, L.; Cheng, S. A.; Wang, J.; Tan, S. C. Self-sustained programmable hygroelectronic interfaces for humidity-regulated hierarchical information encryption and display. Adv. Mater., in press, https://doi.org/10.1002/adma.202208081.

  25. Zhang, Y. X.; Guo, S.; Yu, Z. G.; Qu, H.; Sun, W. X.; Yang, J. C.; Suresh, L.; Zhang, X. P.; Koh, J. J.; Tan, S. C. An asymmetric hygroscopic structure for moisture-driven hygro-ionic electricity generation and storage. Adv. Mater. 2022, 34, 2201228.

    Article  CAS  Google Scholar 

  26. Moreira, K. S.; Lermen, D.; dos Santos, L. P.; Galembeck, F.; Burgo, T. A. L. Flexible, low-cost and scalable, nanostructured conductive paper-based, efficient hygroelectric generator. Energy Environ. Sci. 2021, 14, 353–358.

    Article  CAS  Google Scholar 

  27. Wang, H. Y.; Sun, Y. L.; He, T. C.; Huang, Y. X.; Cheng, H. H.; Li, C.; Xie, D.; Yang, P. F.; Zhang, Y. F.; Qu, L. T. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1000 V output. Nat. Nanotechnol. 2021, 16, 811–819.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Bai, J. X.; Hu, Y. J.; Guang, T. L.; Zhu, K. X.; Wang, H. Y.; Cheng, H. H.; Liu, F.; Qu, L. T. Vapor and heat dual-drive sustainable power for portable electronics in ambient environments. Energy Environ. Sci. 2022, 15, 3086–3096.

    Article  CAS  Google Scholar 

  29. Yang, C.; Huang, Y. X.; Cheng, H. H.; Jiang, L.; Qu, L. T. Hygroelectric generators: Rollable, stretchable, and reconfigurable graphene hygroelectric generators (Adv. Mater. 2/2019). Adv. Mater. 2019, 31, 1970013.

    Article  Google Scholar 

  30. Huang, Y. X.; Cheng, H. H.; Yang, C.; Yao, H. Z.; Li, C.; Qu, L. T. All-region-applicable, continuous power supply of graphene oxide composite. Energy Environ. Sci. 2019, 12, 1848–1856.

    Article  CAS  Google Scholar 

  31. Sun, Z. Y.; Wen, X.; Wang, L. M.; Ji, D. X.; Qin, X. H.; Yu, J. Y.; Ramakrishna, S. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2022, 2, 32–46.

    Article  Google Scholar 

  32. Wang, H. Y.; He, T. C.; Hao, X. Z.; Huang, Y. X.; Yao, H. Z.; Liu, F.; Cheng, H. H.; Qu, L. T. Moisture adsorption-desorption full cycle power generation. Nat. Commun. 2022, 13, 2524.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Liu, X. M.; Gao, H. Y.; Ward, J. E.; Liu, X. R.; Yin, B.; Fu, T. D.; Chen, J. H.; Lovley, D. R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554.

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Wang, D.; Jiang, J.; Cao, M. Y.; Xie, S. S.; Li, Y. M.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. An unprecedented dumbbell-shaped pentadeca-nuclear W-Er heterometal cluster stabilizing nanoscale hexameric arsenotungstate aggregate and electrochemical sensing properties of its conductive hybrid film-modified electrode. Nano Res. 2021, 75, 3628–3637.

    Google Scholar 

  35. Cameron, J. M.; Guillemot, G.; Galambos, T.; Amin, S. S.; Hampson, E.; Haidaraly, K. M.; Newton, G. N.; Izzet, G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: From functional building blocks to hierarchical nanomaterials. Chem. Soc. Rev. 2022, 51, 293–328.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y. F.; Li, Z. W.; Zhang, J. J.; Xu, L. L.; Han, Z. K.; Baiker, A.; Li, G. Nanostructured Ni-MoCx: An efficient non-noble metal catalyst for the chemoselective hydrogenation of nitroaromatics. Nano Res., in press, https://doi.org/10.1007/s12274-023-5598-x.

  37. Wang, J.; Wang, L.; Liu, C. Y.; Wang, Y.; Ye, F.; Yan, W.; Liu, B. Polyoxovanadate ionic crystals with open tunnels stabilized by macrocations for lithium-ion storage. Nano Res., in press, https://doi.org/10.1007/s12274-023-5491-7.

  38. Jordan, J. W.; Cameron, J. M.; Lowe, G. A.; Rance, G. A.; Fung, K. L. Y.; Johnson, L. R.; Walsh, D. A.; Khlobystov, A. N.; Newton, G. N. Stabilization of polyoxometalate charge carriers via redox-driven nanoconfinement in single-walled carbon nanotubes. Angew. Chem., Int. Ed. 2022, 61, e202115619.

    Article  CAS  Google Scholar 

  39. Lin, L. H.; Wei, F. F.; Jiang, R.; Huang, Y. C.; Lin, S. The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst. Nano Res. 2023, 16, 309–317.

    Article  CAS  ADS  Google Scholar 

  40. Duan, S. J.; Xu, X. Y.; Chen, W. L.; Zhi, J. J.; Li, F. R. Grain boundaries passivation of high efficiency and stable perovskite photodetector by polyoxometalate-based composite SiW11@ZIF-8. Polyoxometalates 2022, 1, 9140003.

    Article  Google Scholar 

  41. Li, J.; Zhang, D.; Chi, Y. N.; Hu, C. W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules. Polyoxometalates 2022, 1, 9140012.

    Article  Google Scholar 

  42. Wei, Y. G. Polyoxometalates: An interdisciplinary journal focused on all aspects of polyoxometalates. Polyoxometalates 2022, 1, 9140014.

    Article  Google Scholar 

  43. Zhang, S. M.; Shi, W. X.; Wang, X. Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels. Science 2022, 377, 100–104.

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Liu, Q. D.; He, S. Q.; Yu, B.; Cheng, X. J.; Shi, W. X.; Wang, X. Visible light induced Ag-polyoxometalate coassembly into single-cluster nanowires. Adv. Mater. 2022, 34, 2206178.

    Article  CAS  Google Scholar 

  45. Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction, and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

    Article  CAS  PubMed  Google Scholar 

  46. Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Wang, X. Single-unit-cell catalysis of CO2 electroreduction over sub-1 nm Cu9S5 nanowires. Adv. Energy Mater. 2021, 11, 2100272.

    Article  CAS  Google Scholar 

  48. Liu, Q. D.; Zhang, Q. H.; Shi, W. X.; Hu, H. S.; Zhuang, J.; Wang, X. Self-assembly of polyoxometalate clusters into two-dimensional clusterphene structures featuring hexagonal pores. Nat. Chem. 2022, 14, 433–440.

    Article  PubMed  Google Scholar 

  49. Zhang, H. Y.; Zhao, W. L.; Li, H. Q.; Zhuang, Q. H.; Sun, Z. Q.; Cui, D. Y.; Chen, X. J.; Guo, A.; Ji, X.; An, S. et al. Latest progress in covalently modified polyoxometalates-based molecular assemblies and advanced materials. Polyoxometalates 2022, 1, 9140011.

    Article  Google Scholar 

  50. Zhang, Y.; Liu, Y. F.; Wang, D.; Liu, J. C.; Zhao, J. W. State-of-the-art advances in the syntheses, structures, and applications of polyoxometalate-based metal-organic frameworks. Polyoxometalates 2023, 2, 9140017.

    Article  Google Scholar 

  51. Lu, M.; Zhang, M.; Liu, J.; Yu, T. Y.; Chang, J. N.; Shang, L. J.; Li, S. L.; Lan, Y. Q. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 1861–1871.

    Article  CAS  PubMed  Google Scholar 

  52. Liu, J. C.; Zhao, J. W.; Streb, C.; Song, Y. F. Recent advances on high-nuclear polyoxometalate clusters. Coord. Chem. Rev. 2022, 471, 214734.

    Article  CAS  Google Scholar 

  53. Luo, S.; Luo, Y. F.; Wu, H. C.; Li, M. Y.; Yan, L. J.; Jiang, K. L.; Liu, L.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Self-assembly of 3D carbon nanotube sponges: A simple and controllable way to build macroscopic and ultralight porous architectures. Adv. Mater. 2017, 29, 1603549.

    Article  Google Scholar 

  54. Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    Article  CAS  PubMed  Google Scholar 

  55. Miras, H. N.; Yan, J.; Long, D. L.; Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 2012, 41, 7403–7430.

    Article  CAS  PubMed  Google Scholar 

  56. Li, J. R.; Chen, M. J.; Zhou, S. J.; Li, H. G.; Hao, J. C. Self-assembly of fullerene C60-based amphiphiles in solutions. Chem. Soc. Rev. 2022, 51, 3226–3242.

    Article  CAS  PubMed  Google Scholar 

  57. Gumerova, N. I.; Rompel, A. Polyoxometalates in solution: Speciation under spotlight. Chem. Soc. Rev. 2020, 44, 7568–7601.

    Article  Google Scholar 

  58. Martin-Sabi, M.; Soriano-López, J.; Winter, R. S.; Chen, J. J.; Vilà-Nadal, L.; Long, D. L.; Galán-Mascarós, J. R.; Cronin, L. Redox tuning the Weakley-type polyoxometalate archetype for the oxygen evolution reaction. Nat. Catal. 2018, 1, 208–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gumerova, N. I.; Rompel, A. Synthesis, structures, and applications of electron-rich polyoxometalates. Nat. Rev. Chem. 2018, 2, 0112.

    Article  CAS  Google Scholar 

  60. Yang, L.; Lei, J.; Fan, J. M.; Yuan, R. M.; Zheng, M. S.; Chen, J. J.; Dong, Q. F. The intrinsic charge carrier behaviors and applications of polyoxometalate clusters based materials. Adv. Mater. 2021, 33, 2005019.

    Article  CAS  Google Scholar 

  61. Liu, R. J.; Streb, C. Polyoxometalate-single atom catalysts (POM-SACs) in energy research and catalysis. Adv. Energy Mater. 2021, 11, 2101120.

    Article  CAS  Google Scholar 

  62. Horn, M. R.; Singh, A.; Alomari, S.; Goberna-Ferron, S.; Benages-Vilau, R.; Chodankar, N.; Motta, N.; Ostrikov, K.; MacLeod, J.; Sonar, P. et al. Polyoxometalates (POMs): From electroactive clusters to energy materials. Energy Environ. Sci. 2021, 14, 1652–1700.

    Article  CAS  Google Scholar 

  63. Fang, Z. H.; Luo, Y. F.; Liu, H. T.; Hong, Z. X.; Wu, H. C.; Zhao, F.; Liu, P.; Li, Q. Q.; Fan, S. S.; Duan, W. H. et al. Boosting the oxidative potential of polyethylene glycol-based polymer electrolyte to 4.36 V by spatially restricting hydroxyl groups for high-voltage flexible lithium-ion battery applications. Adv. Sci. 2021, 8, 2100736.

    Article  CAS  Google Scholar 

  64. Zhang, J.; Zhang, K. N.; Xia, B. Y.; Wei, Y.; Li, D. Q.; Zhang, K.; Zhang, Z. X.; Wu, Y.; Liu, P.; Duan, X. D. et al. Carbon-nanotube-confined vertical heterostructures with asymmetric contacts. Adv. Mater. 2017, 24, 1702942.

    Article  Google Scholar 

  65. Liu, Q. D.; He, P. L.; Yu, H. D.; Gu, L.; Ni, B.; Wang, D.; Wang, X. Single molecule-mediated assembly of polyoxometalate single-cluster rings and their three-dimensional superstructures. Sci. Adv. 2019, 5, eaax1081.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  66. Lyon, D. K.; Miller, W. K.; Novet, T.; Domaille, P. J.; Evitt, E.; Johnson, D. C.; Finke, R. G. Highly oxidation resistant inorganic-porphyrin analog polyoxometalate oxidation catalysts. 1. The synthesis and characterization of aqueous-soluble potassium salts of α2-P2W17O61(Mn+·OH2)(n−10) and organic solvent soluble tetra-n-butylammonium salts of α2-P2W17O61(Mn+·OH2)(n−11) (M = Mn3+, Fe3+, Co2+, Ni2+, Cu2+). J. Am. Chem. Soc. 1991, 113, 7209–7221.

    Article  CAS  Google Scholar 

  67. Contant, R.; Richet, M.; Lu, Y. W.; Keita, B.; Nadjo, L. Isomerically pure α1-monosubstituted tungstodiphosphates: Synthesis, characterization, and stability in aqueous solutions. Eur. J. Inorg. Chem. 2002, 2002, 2587–2593.

    Article  Google Scholar 

  68. Granadeiro, C. M.; Ferreira, R. A. S.; Soares-Santos, P. C. R.; Carlos, L. D.; Nogueira, H. I. S. Lanthanopolyoxometalates as building blocks for multiwavelength photoluminescent organic-inorganic hybrid materials. Eur. J. Inorg. Chem. 2009, 2009, 5088–5095.

    Article  Google Scholar 

  69. Geue, N.; Winpenny, R. E. P.; Barran, P. E. Structural characterisation methods for supramolecular chemistry that go beyond crystallography. Chem. Soc. Rev. 2022, 51, 8–27.

    Article  CAS  PubMed  Google Scholar 

  70. Qian, K.; Winans, R. E.; Li, T. Insights into the nanostructure, solvation, and dynamics of liquid electrolytes through small-angle X-ray scattering. Adv. Energy Mater. 2020, 11, 200282.

    Google Scholar 

  71. Liu, Y. Y.; Gao, F. Y.; Ko, S.; Wang, C. Z.; Liu, H. H.; Tang, X. L.; Yi, H. H.; Zhou, Y. S. Superior catalytic performance within H2O-vapor of W-modified CoMn2O4/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Chem. Eng. J. 2022, 434, 134770.

    Article  CAS  Google Scholar 

  72. Wang, D. Y.; Zhang, D. Z.; Yang, Y.; Mi, Q.; Zhang, J. H.; Yu, L. D. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 2021, 15, 2911–2919.

    Article  CAS  PubMed  Google Scholar 

  73. Zhou, T.; Zhu, L. M.; Xie, L. L.; Han, Q.; Yang, X. L.; Cao, X. Y.; Ma, J. M. New insight on K2Zn2V10O28 as an advanced cathode for rechargeable aqueous zinc-ion batteries. Small 2022, 18, 2107102.

    Article  CAS  Google Scholar 

  74. Chen, Y. C.; Huang, Y.; Xu, M. J.; Asset, T.; Yan, X. X.; Artyushkova, K.; Kodali, M.; Murphy, E.; Ly, A.; Pan, X. Q. et al. Catalysts by pyrolysis: Direct observation of transformations during re-pyrolysis of transition metal-nitrogen-carbon materials leading to state-of-the-art platinum group metal-free electrocatalyst. Mater. Today 2022, 53, 58–70.

    Article  CAS  Google Scholar 

  75. McGregor, D.; Burton-Pye, B. P.; Howell, R. C.; Mbomekalle, I. M.; Lukens, W. W. Jr.; Bian, F.; Mausolf, E.; Poineau, F.; Czerwinski, K. R.; Francesconi, L. C. Synthesis, structure elucidation, and redox properties of 99Tc complexes of lacunary Wells–Dawson polyoxometalates: Insights into molecular 99Tc–metal oxide interactions. Inorg. Chem. 2011, 50, 1670–1681.

    Article  CAS  PubMed  Google Scholar 

  76. Wang, T.; Xu, M.; Li, X. H.; Wang, C. L.; Chen, W. L. Highly dispersed redox-active polyoxometalates’ periodic deposition on multi-walled carbon nanotubes for boosting electrocatalytic triiodide reduction in dye-sensitized solar cells. Inorg. Chem. Front. 2020, 7, 1676–1684.

    Article  CAS  Google Scholar 

  77. Zhang, S. M.; Shi, H. D.; Tang, J. W.; Shi, W. X.; Wu, Z. S.; Wang, X. Super-aligned films of sub-1 nm Bi2O3-polyoxometalate nanowires as interlayers in lithium-sulfur batteries. Sci. China Mater. 2021, 64, 2949–2957.

    Article  CAS  Google Scholar 

  78. Zhang, S. M.; Shi, W. X.; Siegler, T. D.; Gao, X. Q.; Ge, F.; Korgel, B. A.; He, Y.; Li, S. Z.; Wang, X. An all-inorganic colloidal nanocrystal flexible polarizer. Angew. Chem., Int. Ed. 2019, 58, 8730–8735.

    Article  CAS  Google Scholar 

  79. Liu, H. L.; Gong, Q. H.; Yue, Y. H.; Guo, L.; Wang, X. Sub-1 nm nanowire based superlattice showing high strength and low modulus. J. Am. Chem. Soc. 2017, 139, 8579–8585.

    Article  CAS  PubMed  Google Scholar 

  80. Gunn, R. Thunderstorm electrification of hail and graupel by polar dribble. Science 1966, 151, 686–687.

    Article  CAS  PubMed  ADS  Google Scholar 

  81. Gouveia, R. F.; Galembeck, F. Electrostatic charging of hydrophilic particles due to water adsorption. J. Am. Chem. Soc. 2009, 131, 11381–11386.

    Article  CAS  PubMed  Google Scholar 

  82. Jin, D. W.; Ko, Y. J.; Ahn, C. W.; Hur, S.; Lee, T. K.; Jeong, D. G.; Lee, M.; Kang, C. Y.; Jung, J. H. Polarization- and electrode-optimized polyvinylidene fluoride films for harsh environmental piezoelectric nanogenerator applications. Small 2021, 17, 2007289.

    Article  CAS  Google Scholar 

  83. Chen, Z. M.; Gu, X. Q.; Guo, Y. T.; Wang, X.; Shao, M. W.; Dong, B.; Kang, Z. H. A carbon dot-based total green and self-recoverable solid-state electrochemical cell fully utilizing O2/H2O redox couple. SusMat 2021, 1, 448–457.

    Article  CAS  Google Scholar 

  84. Khan, M.; Hussain, A.; Malik, M. Y.; Salahuddin, T.; Aly, S. Numerical analysis of Carreau fluid flow for generalized Fourier’s and Fick’s laws. Appl. Numer. Math. 2019, 144, 100–117.

    Article  MathSciNet  Google Scholar 

  85. Chen, F. R.; Chen, H. F. A diffusion model of the pervaporation separation of ethylene glycol-water mixtures through crosslinked poly(vinyl alcohol) membrane. J. Membrane Sci. 1998, 139, 201–209.

    Article  CAS  Google Scholar 

  86. Raut, D. R.; Mohapatra, P. K.; Choudhary, M. K.; Nayak, S. K. Evaluation of two calix-crown-6 ligands for the recovery of radio cesium from nuclear waste solutions: Solvent extraction and liquid membrane studies. J. Membrane Sci. 2013, 423, 197–205.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22271042 and 21871041), the Science and Technology Research Project of the Education Department of Jilin Province (No. JJKH20211286KJ), and the Natural Science Foundation of Jilin Province (No. 20180101298JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, T., Chen, W., Kang, Z. et al. Polyoxometalates for continuous power generation by atmospheric humidity. Nano Res. 17, 1875–1885 (2024). https://doi.org/10.1007/s12274-023-5959-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5959-5

Keywords

Navigation