Skip to main content
Log in

Effect of Bimodal Grain Size Distribution on Scatter in Toughness

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Blunt-notch tests were performed at −160 °C to investigate the effect of a bimodal ferrite grain size distribution in steel on cleavage fracture toughness, by comparing local fracture stress values for heat-treated microstructures with uniformly fine, uniformly coarse, and bimodal grain structures. An analysis of fracture stress values indicates that bimodality can have a significant effect on toughness by generating high scatter in the fracture test results. Local cleavage fracture values were related to grain size distributions and it was shown that the largest grains in the microstructure, with an area percent greater than approximately 4 pct, gave rise to cleavage initiation. In the case of the bimodal grain size distribution, the large grains from both the “fine grain” and “coarse grain” population initiate cleavage; this spread in grain size values resulted in higher scatter in the fracture stress than in the unimodal distributions. The notch-bend test results have been used to explain the difference in scatter in the Charpy energies for the unimodal and bimodal ferrite grain size distributions of thermomechanically controlled rolled (TMCR) steel, in which the bimodal distribution showed higher scatter in the Charpy impact transition (IT) region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Bakelite is a trademark of Bakelite AG, Gennaer Strasse, 2-4 58642 Iserlohn, Germany.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. E. Orowan: Trans. Inst. Eng. Shipbuilders Scotland, Institute of Engineers and Shipbuilders in Scotland, Glasgow, Scotland, United Kingdom, 1946, vol. 80, pp. 165–96.

  2. A.H. Cottrell: Trans. AIME, 1958, vol. 212, pp. 192–203.

    CAS  Google Scholar 

  3. E. Smith: Proc. Conf. Physical Basis of Yield and Fracture, Institute of Physics and Physical Society, Oxford, United Kingdom, 1966, pp. 36–45.

  4. C.J. McMahon and M. Cohen: Acta Metall., 1965, vol. 13, pp. 591–604.

    Article  CAS  Google Scholar 

  5. J.F. Knott: Fundamentals of Fracture Mechanics, Butterworth and Co., London, 1973, pp. 170–85.

    Google Scholar 

  6. J.H. Chen and C. Yan: Metall. Trans. A, 1992, vol. 23A, pp. 2549–56.

    ADS  CAS  Google Scholar 

  7. D.A. Curry and J.F. Knott: Met. Sci., 1978, vol. 12, pp. 511–14.

    Article  CAS  Google Scholar 

  8. J.F. Knott: Conf. Proc. Steels for Line Pipe and Pipeline Fittings, The Metals Society, London, United Kingdom, 1983, pp. 79–89.

  9. N.J. Petch: Acta Metall., 1986, vol. 34, pp. 1387–93.

    Article  CAS  Google Scholar 

  10. A. Echeverria and J.M. Rodriguez-Ibabe: Mater. Sci. Eng., A, 2003, vol. 346, pp. 149–58.

    Article  Google Scholar 

  11. D. Chakrabarti, C.L. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58, pp. 423–38.

    Article  CAS  Google Scholar 

  12. J.F. Knott: Proc. Int. Conf. Microalloyed Steels—Emerging Technologies and Applications, Vitasta Publishing Pvt. Ltd., New Delhi, India, 2007, pp. 10–23.

  13. R.O. Ritchie, J.F. Knott, and J.R. Rice: J. Mech. Phys. Solids, 1973, vol. 21, pp. 395–410.

    Article  ADS  CAS  Google Scholar 

  14. D. Bhattacharjee, J.F. Knott, and C.L. Davis: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 121–30.

    Article  CAS  Google Scholar 

  15. S.J. Wu and C.L. Davis: Mater. Sci. Eng., A, 2004, vols. 387–389, pp. 456–60.

    Google Scholar 

  16. M.T. Shehata and J.D. Boyd: Proc. Conf. Advances in Physical Metallurgy and Applications of Steels, Liverpool, 1982, Metals Society, London, 1982, Book 284, pp. 229–36.

  17. G.Z. Wang and J.H. Chen: Int. J. Fract., 1998, vol. 89, pp. 269–84.

    Article  CAS  Google Scholar 

  18. S.J. Wu and J.F. Knott: J. Mech. Phys. Solids, 2004, vol. 52, pp. 907–24.

    Article  ADS  CAS  Google Scholar 

  19. J.H. Chen, L. Zhu, and H. Ma: Acta Metall. Mater., 1990, vol. 38, pp. 2527–35.

    Article  CAS  Google Scholar 

  20. D. Chakrabarti: Doctoral Thesis, University of Birmingham, Birmingham, United Kingdom, 2007.

  21. J.R. Griffiths and D.R.J. Owen: J. Mech. Phys. Solids, 1971, vol. 19, pp. 419–31.

    Article  ADS  Google Scholar 

  22. R. Ding, A. Islam, S. Wu, and J.F. Knott: Mater. Sci. Technol., 2005, vol. 21, pp. 467–75.

    Article  CAS  Google Scholar 

  23. L.P. Zhang: Doctoral Thesis, University of Birmingham, Birmingham, United Kingdom, 1999.

  24. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill Book Company, London, 1988, pp. 275–338.

    Google Scholar 

  25. D. Tabor: Proc. R. Soc. London, Ser. A, 1947, vol. 192, pp. 247–74.

    ADS  Google Scholar 

  26. D. Bhattacharjee, C.L. Davis, and J.F. Knott: Ironmaking and Steelmaking, 2003, vol. 30, pp. 249–55.

  27. C.L. Davis: Doctoral Thesis, University of Cambridge, Cambridge, United Kingdom, 1994.

  28. BSEN 14556: Standard on Steel: Charpy V-Notch Pendulum Impact Test, Instrumented Test Method, BSI British Standard, London, United Kingdom, 2000, pp. 1–28.

  29. M. Mantyla, A. Rossoll, I. Nedbal, C. Prioul, and B. Marini: J. Nucl. Mater., 1999, vol. 264, pp. 257–62.

    Article  CAS  Google Scholar 

  30. M.A. Linaza, J.L. Romero, J.M. Rodriguez-Ibabe, and J.J. Urcola: Scripta Metall., 1995, vol. 32, pp. 395–400;

    Article  CAS  Google Scholar 

  31. W. Lei, D. Li, and M. Yao: Scripta Metall.; 1994, vol. 31 (1), pp. 5–7.

    Article  CAS  Google Scholar 

  32. Y.K. Lee: J. Mater. Sci. Lett., 2002, vol. 21 (16) pp. 1253–55.

    Article  CAS  Google Scholar 

  33. W. Steven and A.G. Haynes: JISI, 1956, vol. 183, pp. 349–59.

    CAS  Google Scholar 

  34. D.P. Fairchild, D.G. Howden, and W.A.T. Clark: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 641–52.

    Article  CAS  Google Scholar 

  35. M.J. Balart, C.L. Davis, and M. Strangwood: Mater. Sci. Eng., A, 2000, vol. 284, pp. 1–13.

    Article  Google Scholar 

  36. J.H. Chen, G.Z. Wang, Q. Wang, and Y.G. Liu; Int. J. Fract., 2004, vol. 126, pp. 223–41.

    Article  CAS  Google Scholar 

  37. G.Z. Wang, Y.G. Liu, and J.H. Chen: Mater. Sci. Eng., A, 2004, vol. 369, pp. 181–91.

    Article  Google Scholar 

  38. J.H. Chen and C. Yan: Mater. Sci. Technol., 1992, vol. 23A, pp. 509–17.

    CAS  Google Scholar 

  39. J.H. Chen, G.Z. Wang, and H. Ma: Metall. Trans. A, 1990, vol. 21A, pp. 321–30.

    ADS  CAS  Google Scholar 

  40. T. Gladman: The Physical Metallurgy of Microalloyed Steels, Book 615, The Institute of Materials, London, 1997, pp. 176–223.

    Google Scholar 

  41. S. Gunduz and R.C. Cochrane: Mater. Des., 2005, vol. 26, pp. 486–92.

    Google Scholar 

  42. E.V. Morales, J. Gallego, and H.J. Kestenbach: Philos. Mag. Lett., 2003, vol. 83, pp. 79–87.

    Article  CAS  Google Scholar 

  43. C.Z. Wang, J.H. Chen, and J.G. Wang: Int. J. Fract., 2002, vol. 118, pp. 211–27.

    Article  CAS  Google Scholar 

  44. G.Z. Wang, J.G. Wang, and J.H. Chen; Eng. Fract. Mech., 2003, vol. 70, pp. 2499–2512.

    Article  Google Scholar 

  45. M.G. Mendiratta, R.L. Goetz, and D.M. Dimiduk: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3903–12.

    Article  ADS  CAS  Google Scholar 

  46. P. Bowen, S.G. Druce, and J.F. Knott: Acta Metall., 1986, vol. 34 (6), pp. 1121–31.

    Article  CAS  Google Scholar 

  47. J.I. San Martin and J.M. Rodriguez-Ibabe: Scripta Mater., 1999, vol. 40, pp. 459–64.

    Article  CAS  Google Scholar 

  48. J.H. Chen, G.Z. Wang, C. Yan, H. Ma, and L. Zhu: Int. J. Fract., 1997, vol. 83, pp. 139–57.

    Article  CAS  Google Scholar 

  49. A. From and R. Sandstrom: Mater. Charact., 1999, vol. 42, pp. 111–22.

    Article  CAS  Google Scholar 

  50. F. Vodopivec, B. Arzensek, D. Kmetic, and J. Vojvodic-Tuma: Mater. Technol., 2003, vol. 37, pp. 317–26.

    Google Scholar 

  51. H. Qiu, R. Ito, and K. Hiraoka: Mater. Sci. Eng., A, 2006, vols. 435–436, pp. 648–52.

    Google Scholar 

  52. P. Hausild, C. Berdin, and P. Bompard: Mater. Sci. Eng., A, 2005, vol. 391, pp. 188–97.

    Article  Google Scholar 

  53. P. Shanmugam and S.D. Pathak: Eng. Fract. Mech., 1996, vol. 53, pp. 991–1005.

    Article  Google Scholar 

  54. D. Talbot: Doctoral Thesis, University of Birmingham, Birmingham, United Kingdom, 2002.

  55. S.J. Wu and C.L. Davis; J. Microsc., 2004, vol. 213, pp. 262–72.

    Article  PubMed  CAS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Corus UK Ltd. for provision of the test material and Professor P. Bowen for provision of the research facilities at the University of Birmingham. One of the authors, (DC) is grateful to the ‘the Universities, UK’ and the University of Birmingham in the United Kingdom for awarding the ‘Overseas Research Scholarship’ (ORS Grant Reference No: 2003005031) to carry out his research in the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debalay Chakrabarti.

Additional information

Manuscript submitted April 9, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, D., Strangwood, M. & Davis, C. Effect of Bimodal Grain Size Distribution on Scatter in Toughness. Metall Mater Trans A 40, 780–795 (2009). https://doi.org/10.1007/s11661-009-9794-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9794-4

Keywords

Navigation