Skip to main content
Log in

Harvesting light with transformation optics

  • Special Focus
  • Progress of Projects Supported by NSFC
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Transformation optics (TO) is a new tool for controlling electromagnetic fields. In the context of metamaterial technology, it provides a direct link between a desired electromagnetic (EM) phenomenon and the material response required for its occurrence. Recently, this powerful framework has been successfully exploited to study surface plasmon assisted phenomena such as light harvesting. Here, we review the general strategy based on TO to design plasmonic devices capable of harvesting light over a broadband spectrum and achieving considerable field confinement and enhancement. The methodology starts with two-dimensional (2D) cases, such as 2D metal edges, crescent-shaped cylinders, nanowire dimers, and rough metal surfaces, and is well extended to fully-fledged three-dimensional (3D) situations. The largely analytic approach gives physical insights into the processes involved and suggests a way forward to study a wide variety of plasmonic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater, 2008, 7: 442–453

    Google Scholar 

  2. Kabashin A V, Evans P, Pastkovsky S, et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater, 2009, 8: 867–871

    Google Scholar 

  3. Brolo A G. Plasmonics for future biosensors. Nat Photon, 2012, 6: 709–713

    Google Scholar 

  4. Wu C H, Khanikaev A B, Adato R, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater, 2012, 11: 69–75

    Google Scholar 

  5. Nie S M, Emery S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275: 1102–1106

    Google Scholar 

  6. Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett, 1997, 78: 1667–1670

    Google Scholar 

  7. Lim D K, Jeon K S, Kim H M, et al. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater, 2010, 9: 60–67

    Google Scholar 

  8. Kravets V G, Schedin F, Jalil R, et al. Singular phase nano-optics in plasmonic metamaterials for label-free singlemolecule detection. Nat Mater, 2013, 12: 304–309

    Google Scholar 

  9. Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461: 629–632

    Google Scholar 

  10. Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser. Nature, 2009, 460: 1110–1112

    Google Scholar 

  11. Ma R M, Oulton R F, Sorger V J, et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat Mater, 2011, 10: 110–113

    Google Scholar 

  12. Lu Y J, Kim J, Chen H Y, et al. Plasmonic nanolaser using epitaxially grown silver film. Science, 2012, 337: 450–453

    Google Scholar 

  13. Kim S, Jin J H, Kim Y J, et al. High-harmonic generation by resonant plasmon field enhancement. Nature, 2008, 453: 757–760

    Google Scholar 

  14. Zhang Y, Grady N K, Ayala-Orozco C, et al. Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett, 2011, 11: 5519–5523

    Google Scholar 

  15. Navarro-Cia M, Maier S A. Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. ACS Nano, 2012, 6: 3537–3544

    Google Scholar 

  16. Stockman M I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett, 2004, 93: 137404

    Google Scholar 

  17. Ropers C, Neacsu C C, Elsaesser T, et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett, 2007, 7: 2784–2788

    Google Scholar 

  18. Moreno E, Rodrigo S G, Bozhevolnyi S I, et al. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys Rev Lett, 2008, 100: 023901

    Google Scholar 

  19. Volkov V S, Bozhevolnyi S I, Rodrigo S G, et al. Nanofocusing with channel plasmon polaritons. Nano Lett, 2009, 9: 1278–1282

    Google Scholar 

  20. De Angelis F, Das G, Candeloro P, et al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat Nanotechnol, 2010, 5: 67–72

    Google Scholar 

  21. Zhang J J, Xiao S S, Wubs M, et al. Surface plasmon wave adapter designed with transformation optics. ACS Nano, 2011, 5: 4359–4364

    Google Scholar 

  22. Choo H, Kim M K, Staffaroni M, et al. Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nat Photon, 2012, 6: 837–843

    Google Scholar 

  23. Pile D F P, Ogawa T, Gramotnev D K, et al. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl Phys Lett, 2005, 87: 061106

    Google Scholar 

  24. Choi H, Pile D F P, Nam S, et al. Compressing surface plasmons for nano-scale optical focusing. Opt Express, 2009, 17: 7519–7524

    Google Scholar 

  25. Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424: 824–830

    Google Scholar 

  26. Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nat Photon, 2010, 4: 83–91

    Google Scholar 

  27. Halas N J, Lal S, Chang W S, et al. Plasmons in strongly coupled metallic nanostructures. Chem Rev, 2011, 111: 3913–3961

    Google Scholar 

  28. Rycenga M, Cobley C M, Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev, 2011, 111: 3669–3712

    Google Scholar 

  29. Giannini V, Fernandez-Dominguez A I, Sonnefraud Y, et al. Controlling light localization and light-matter interactions with nanoplasmonics. Small, 2010, 6: 2498–2507

    Google Scholar 

  30. Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312: 1780–1782

    MathSciNet  MATH  Google Scholar 

  31. Kundtz N B, Smith D R, Pendry J B. Electromagnetic design with transformation optics. Proc IEEE, 2011, 99: 1622–1633

    Google Scholar 

  32. Chen H Y, Chan C T, Sheng P. Transformation optics and metamaterials. Nat Mater, 2010, 9: 387–396

    Google Scholar 

  33. Ward A J, Pendry J B. Refraction and geometry in Maxwell’s equations. J Mod Opt, 1996, 43: 773–793

    MathSciNet  MATH  Google Scholar 

  34. Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314: 977–980

    Google Scholar 

  35. Luo Y, Chen H S, Zhang J J, et al. Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations. Phys Rev B, 2008, 77: 125127

    Google Scholar 

  36. Zhang J J, Luo Y, Mortensen N A. Minimizing the scattering of a nonmagnetic cloak. Appl Phys Lett, 2010, 96: 113511

    Google Scholar 

  37. Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett, 2008, 101: 203901

    Google Scholar 

  38. Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak. Science, 2009, 323: 366–369

    Google Scholar 

  39. Valentine J, Li J S, Zentgraf T, et al. An optical cloak made of dielectrics. Nat Mater, 2009, 8: 568–571

    Google Scholar 

  40. Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths. Science, 2010, 328: 337–339

    Google Scholar 

  41. Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun, 2010, 1: 21

    Google Scholar 

  42. Luo Y, Zhang J J, Chen H S, et al. A rigorous analysis of plane-transformed invisibility cloaks. IEEE Trans Antennas Propag, 2009, 57: 3926–3933

    Google Scholar 

  43. Chen X Z, Luo Y, Zhang J J, et al. Macroscopic invisibility cloaking of visible light. Nat Commun, 2011, 2: 176

    Google Scholar 

  44. Zhang J, Liu L, Luo Y, et al. Homogeneous optical cloak constructed with uniform layered structures. Opt Express, 2011, 19: 8625–8631

    Google Scholar 

  45. Landy N, Smith D R. A full-parameter unidirectional metamaterial cloak for microwaves. Nat Mater, 2013, 12: 25–28

    Google Scholar 

  46. Luo Y, Zhang J J, Wu B I, et al. Interaction of an electromagnetic wave with a cone-shaped invisibility cloak and polarization rotator. Phys Rev B, 2008, 78: 125108

    Google Scholar 

  47. Zhang J J, Luo Y, Chen H S, et al. Cloak of arbitrary shape. J Opt Soc Am B, 2008, 25: 1776–1779

    Google Scholar 

  48. Wee W H, Pendry J B. Super phase array. New J Phys, 2010, 12: 033047

    Google Scholar 

  49. Luo Y, Zhang J J, Chen H S, et al. High-directivity antenna with small antenna aperture. Appl Phys Lett, 2009, 95: 193506

    Google Scholar 

  50. Zhang J J, Luo Y, Mortensen N A. Hiding levitating objects above a ground plane. Appl Phys Lett, 2010, 97: 133501

    Google Scholar 

  51. Kundtz N, Smith D R. Extreme-angle broadband metamaterial lens. Nat Mater, 2010, 9: 129–132

    Google Scholar 

  52. Ma H F, Cui T J. Three-dimensional broadband and broad-angle transformation-optics lens. Nat Commun, 2010, 1: 124

    Google Scholar 

  53. Luo Y, Zhang J J, Ran L X, et al. New concept conformal antennas utilizing metamaterial and transformation optics. IEEE Antenn Wirel Propag Lett, 2008, 7: 508–511

    Google Scholar 

  54. Zhang J J, Luo Y, Chen H S, et al. Manipulating the directivity of antennas with metamaterial. Opt Express, 2008, 16: 10962–10967

    Google Scholar 

  55. Luo Y, Zhang J J, Chen H S, et al. Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect. Prog Electromagn Res, 2009, 95: 167–178

    Google Scholar 

  56. Zhang J J, Luo Y, Mortensen N A. Transmission of electromagnetic waves through sub-wavelength channels. Opt Express, 2010, 18: 3864–3870

    Google Scholar 

  57. Zhang J J, Luo Y, Chen H S, et al. Guiding waves through an invisible tunnel. Opt Express, 2009, 17: 6203–6208

    Google Scholar 

  58. Luo Y, Zhang J J, Chen H S, et al. Cylindrical cloak with axial permittivity/permeability spatially invariant. Appl Phys Lett, 2008, 93: 033504

    Google Scholar 

  59. Luo Y, Zhang J J, Chen H S, et al. Full-wave analysis of prolate spheroidal and hyperboloidal cloaks. J Phys D Appl Phys, 2008, 41: 235101

    Google Scholar 

  60. Zhang J J, Luo Y, Xi S, et al. Directive emission obtained by coordinate transformation. Prog Electromagn Res, 2008, 81: 437–446

    Google Scholar 

  61. Zhang J J, Huangfu J T, Luo Y, et al. Cloak for multilayered and gradually changing media. Phys Rev B, 2008, 77: 035116

    Google Scholar 

  62. Zhang J J, Luo Y, Chen H S, et al. Sensitivity of transformation cloak in engineering. Prog Electromagn Res, 2008, 84: 93–104

    Google Scholar 

  63. Pendry J B, Aubry A, Smith D R, et al. Transformation optics and subwavelength control of light. Science, 2012, 337: 549–552

    MathSciNet  Google Scholar 

  64. Liu Y M, Zhang X. Recent advances in transformation optics. Nanoscale, 2012, 4: 5277–5292

    Google Scholar 

  65. Aubry A, Lei D Y, Maier S A, et al. Conformal transformation applied to plasmonics beyond the quasistatic limit. Phys Rev B, 2010, 82: 205109

    Google Scholar 

  66. Fernandez-Dominguez A I, Wiener A, Garcia-Vidal F J, et al. Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys Rev Lett, 2012, 108: 023901

    Google Scholar 

  67. Fernandez-Dominguez A I, Zhang P, Luo Y, et al. Transformation-optics insight into nonlocal effects in separated nanowires. Phys Rev B, 2012, 86: 241110

    Google Scholar 

  68. Aubry A, Lei D Y, Fernandez-Dominguez A I, et al. Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett, 2010, 10: 2574–2579

    Google Scholar 

  69. Luo Y, Pendry J B, Aubry A. Surface plasmons and singularities. Nano Lett, 2010, 10: 4186–4191

    Google Scholar 

  70. Mcphedran R C, Perrins W T. Electrostatic and optical resonances of cylinder pairs. Appl Phys, 1981, 24: 311–318

    Google Scholar 

  71. Mcphedran R C, Milton G W. Transport-properties of touching cylinder pairs and of the square array of touching cylinders. Proc R Soc A-Math Phys Eng Sci, 1987, 411: 313–326

    Google Scholar 

  72. Garcia-Vidal F J, Pendry J B. Collective theory for surface enhanced Raman scattering. Phys Rev Lett, 1996, 77: 1163–1166

    Google Scholar 

  73. Xu H X, Aizpurua J, Kall M, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E, 2000, 62: 4318–4324

    Google Scholar 

  74. Kottmann J P, Martin O J F. Plasmon resonant coupling in metallic nanowires. Opt Express, 2001, 8: 655–663

    Google Scholar 

  75. Talley C E, Jackson J B, Oubre C, et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett, 2005, 5: 1569–1574

    Google Scholar 

  76. Sweatlock L A, Maier S A, Atwater H A, et al. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys Rev B, 2005, 71: 235408

    Google Scholar 

  77. Romero I, Aizpurua J, Bryant G W, et al. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Express, 2006, 14: 9988–9999

    Google Scholar 

  78. Lassiter J B, Aizpurua J, Hernandez L I, et al. Close encounters between two nanoshells. Nano Lett, 2008, 8: 1212–1218

    Google Scholar 

  79. Atre A C, Garcia-Etxarri A, Alaeian H, et al. A broadband negative index metamaterial at optical frequencies. Adv Optical Mater, 2013, 1: 327–333

    Google Scholar 

  80. Aubry A, Lei D Y, Maier S A, et al. Broadband plasmonic device concentrating the energy at the nanoscale: the crescent-shaped cylinder. Phys Rev B, 2010, 82: 125430

    Google Scholar 

  81. Luo Y, Lei D Y, Maier S A, et al. Broadband light harvesting nanostructures robust to edge bluntness. Phys Rev Lett, 2012, 108: 023901

    Google Scholar 

  82. Luo Y, Aubry A, Pendry J B. Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach. Phys Rev B, 2011, 83: 155422

    Google Scholar 

  83. Wu L Y, Ross B M, Lee L P. Optical properties of the crescent-shaped nanohole antenna. Nano Lett, 2009, 9: 1956–1961

    Google Scholar 

  84. Shumaker-Parry J S, Rochholz H, Kreiter M. Fabrication of crescent-shaped optical antennas. Adv Mater, 2005, 17: 2131–2134

    Google Scholar 

  85. Rochholz H, Bocchio N, Kreiter M. Tuning resonances on crescent-shaped noble-metal nanoparticles. New J Phys, 2007, 9: 53

    Google Scholar 

  86. Bukasov R, Shumaker-Parry J S. Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett, 2007, 7: 1113–1118

    Google Scholar 

  87. Luo Y, Lei D Y, Maier S A, et al. Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding. ACS Nano, 2012, 6: 6492–6506

    Google Scholar 

  88. Aubry A, Lei D Y, Maier S A, et al. Interaction between plasmonic nanoparticles revisited with transformation optics. Phys Rev Lett, 2010, 105: 233901

    Google Scholar 

  89. Aubry A, Lei D Y, Maier S A, et al. Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach. ACS Nano, 2011, 5: 3293–3308

    Google Scholar 

  90. Prodan E, Radloff C, Halas N J, et al. A hybridization model for the plasmon response of complex nanostructures. Science, 2003, 302: 419–422

    Google Scholar 

  91. Nordlander P, Prodan E. Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett, 2004, 4: 2209–2213

    Google Scholar 

  92. Willingham B, Brandl D W, Nordlander P. Plasmon hybridization in nanorod dimers. Appl Phys B-Lasers Opt, 2008, 93: 209–216

    Google Scholar 

  93. Luo Y. Resonant plasmonic nanostructures: transformation optics applied to plasmonics. Dissertation of Doctoral Degree. London: Imperial College London, 2012. 94–106

    Google Scholar 

  94. Fernandez-Dominguez A I, Maier S A, Pendry J B. Collection and concentration of light by touching spheres: a transformation optics approach. Phys Rev Lett, 2010, 105: 266807

    Google Scholar 

  95. Fernandez-Dominguez A I, Luo Y, Wiener A, et al. Theory of three-dimensional nanocrescent light harvesters. Nano Lett, 2012, 12: 5946–5953

    Google Scholar 

  96. Pendry J B, Fernández-Dominguez A I, Luo Y, et al. Capturing photons with transformation optics. Nat Phys, 2013, 9: 518–522

    Google Scholar 

  97. Atay T, Song J H, Nurmikko A V. Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime. Nano Lett, 2004, 4: 1627–1631

    Google Scholar 

  98. Hill R T, Mock J J, Urzhumov Y, et al. Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. Nano Lett, 2010, 10: 4150–4154

    Google Scholar 

  99. Mock J J, Hill R T, Tsai Y J, et al. Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation. Nano Lett, 2012, 12: 1757–1764

    Google Scholar 

  100. Brown L V, Sobhani H, Lassiter J B, et al. Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano, 2010, 4: 819–832

    Google Scholar 

  101. Huang F M, Wilding D, Speed J D, et al. Dressing plasmons in particle-in-cavity architectures. Nano Lett, 2011, 11: 1221–1226

    Google Scholar 

  102. Cang H, Labno A, Lu C G, et al. Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging. Nature, 2011, 469: 385–388

    Google Scholar 

  103. Ciraci C, Hill R T, Mock J J, et al. Probing the ultimate limits of plasmonic enhancement. Science, 2012, 337: 1072–1074

    MATH  Google Scholar 

  104. Savage K J, Hawkeye M M, Esteban R, et al. Revealing the quantum regime in tunnelling plasmonics. Nature, 2012, 491: 574–577

    Google Scholar 

  105. Lei D Y, Fernandez-Dominguez A I, Sonnefraud Y, et al. Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. ACS Nano, 2012, 6: 3537–3544

    Google Scholar 

  106. Hanham S M, Fernandez-Dominguez A I, Teng J H, et al. Broadband terahertz plasmonic response of touching InSb disks. Adv Mater, 2012, 24: 226–230

    Google Scholar 

  107. Isaac T H, Barnes W L, Hendry E. Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons. Appl Phys Lett, 2008, 93: 241115

    Google Scholar 

  108. Giannini V, Berrier A, Maier S A, et al. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies. Opt Express, 2010, 18: 2797–2807

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Zhao, R., Fernandez-Dominguez, A.I. et al. Harvesting light with transformation optics. Sci. China Inf. Sci. 56, 1–13 (2013). https://doi.org/10.1007/s11432-013-5031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-5031-2

Keywords

Navigation