Skip to main content
Log in

Molecular marker-assisted selection for enhanced yield in malting barley

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Brewers are reluctant to change malting barley (Hordeum vulgare ssp. vulgare L.) cultivars due to concerns of altered flavor and brewing procedures. The U.S. Pacific Northwest is capable of producing high yielding, high quality malting barley but lacks adapted cultivars with desirable malting characteristics. Our goal was to develop high yielding near isogenic lines that maintain traditional malting quality characteristics by transferring quantitative trait loci (QTL) associated with yield, via molecular marker-assisted backcrossing, from the high yielding cv. Baronesse to the North American two-row malting barley industry standard cv. Harrington. For transfer, we targeted Baronesse chromosome 2HL and 3HL fragments presumed to contain QTL that affect yield. Analysis of genotype and yield data suggests that QTL reside at two regions, one on 2HL (ABG461C-MWG699) and one on 3HL (MWG571A-MWG961). Genotype and yield data indicate that additional Baronesse genome regions are probably involved, but need to be more precisely defined. Based on yield trials conducted over 22 environments and malting analyses from 6 environments, we selected one isogenic line (00-170) that has consistently produced yields equal to Baronesse while maintaining a Harrington-like malting quality profile. We conclude there is sufficient data to warrant experiments testing whether the 2HL and 3HL Baronesse QTL would be effective in increasing the yield of other low yielding barley cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Society of Brewing Chemist. 1992. Methods of Analysis, 8th edn.. In: Kneen E. (ed. ) American Society of Brewing Chemists, St. Paul, Minnesota, USA.

    Google Scholar 

  • Bernacchi D., Beck-Bunn T., Emmatty D., Eshed Y., Inai S., Lopez J., Petiard V., Sayama H., Uhlig J., Zamir D. and Tanksley S. 1998. Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor. Appl. Genet. 97: 170-180.

    Google Scholar 

  • Costa J. M., Corey A., Hayes P. M., Jobet C., Kleinhofs A., Kopisch-Obusch A., Kramer S. F., Kudrna D., Li M., Riera-Lizarazu O., Sato K., Szucs P., Toojinda T., Vales M. I. and Wofle R. I. 2001. Molecular mapping of the Oregon Wofle barleys: a phenotypically polymorphic doubled-haploid population. Theor. Appl. Genet. 103: 415-424.

    Google Scholar 

  • Dahleen L. S., Agrama H. A., Horsley R. D., Steffenson B. J., Schwarz P. B., Mesfin A. and Franckowiak J. D. 2003. Identification of QTLs asscociated with Fusarium head blight resistance in Zhedar 2 barley. Theor. Appl. Genet. 108: 95-104.

    Google Scholar 

  • Dudley J. W. 1993. Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci. 33: 660-668.

    Google Scholar 

  • Frary A., Nesbitt T. C., Frary A., Grandillo S., van der Knaap E., Cong B., Liu J., Meller J., Elber R., Alpert K. B. and Tanksley S. D. 2000. fw2. 2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85-88.

    Google Scholar 

  • Graner A., Jahoor A., Schondelmaier J., Siedler H., Pillen K., Fischbeck G., Wenzel G., Herrmann R. G. 1991. Construction of an RFLP map of barley. Theor. Appl. Genet. 83: 250-256.

    Google Scholar 

  • Hayes P. M., Liu B. H., Knapp S. J., Chen F., Jones B., Blake T., Francowiak J., Rasmusson D., Sorrells M., Ullrich S. E., Wesenberg D. and Kleinhofs A. 1993. Quantitative locus effects and environmental interaction of North American barley germplasm. Theor. Appl. Genet. 87: 392-401.

    Google Scholar 

  • Hayes P. M., Chen F. Q., Kleinhofs A., Kilian A. and Mather D. E. 1996. Barley genome mapping and its applications. In: Jauhar P. P. (ed.) Method of genome analysis in plants. CRC press, Boca Raton, Florida, USA., pp. 229-249.

    Google Scholar 

  • Han F., Ullrich S. E., Kleinhofs A., Jones B. L., Hayes P. M. and Wesenberg D. M. 1997. Fine structure mapping of the barley chromosome-1 centromere region containing malting-quality QTLs. Theor. Appl. Genet. 95: 903-910.

    Google Scholar 

  • Han F., Ullrich S. E., Clancy J. A. and Romagosa I. 1999. Inheritance and fine mapping of a major barley seed dormancy QTL. Plant. Sci. 143: 113-118.

    Google Scholar 

  • Igartua E., Edney M., Rossnagel B. G., Spaner D., Legge W. G., Scoles G. J., Eckstein P. E., Penner G. A., Tinker N. A., Briggs K. G., Falk D. E. and Mather D. E. 2000. Marker-based selection of QTL affecting grain and malt quality in two-row barley. Crop Sci. 40: 1426-1433.

    Google Scholar 

  • Kandemir N., Jones B. L., Wesenberg D. M., Ullrich S. E. and Kleinhofs A. 2000a. Marker-assisted analysis of three grain yield QTL in barley (Hordeum vulgare L.) using near isogenic lines. Mol. Breed. 6: 157-167.

    Google Scholar 

  • Kandemir N., Kudrna D. A., Ullrich S. E. and Kleinhofs A. 2000b. Molecular marker assisted genetic analysis of head shattering in six-rowed barley. Theor. Appl. Genet. 101: 203-210.

    Google Scholar 

  • Kasha K. J., Kleinhofs A., Kilian A., Saghai-Maroof M., Scoles G. J., Hayes P. M., Chen F. Q., Xia X., Li X. Z., Biyashev R. M., Hoffman D., Dahleen L., Blake T. K., Rossnagel B. G., Steffenson B. J., Thomas P. L., Falk D. E., Laroche A., Kim W., Molnar S. J. and Sorrells M. E. 1995. The North American barley map on the cross HT and its comparison to the map on cross SM. In: Tsunewaki K. (ed). The plant genome and plastome: Their structure and evolution. Kodansha Scientific Ltd., Tokyo, p. 73-88.

    Google Scholar 

  • Kjaer B. and Jensen J. 1996. Quantitative trait loci for grain yield and yield components in a cross between a six-rowed and a tworowed barley. Euphytica 90: 39-48.

    Google Scholar 

  • Kleinhofs A., Kilian A., Saghai-Maroof M. A., Biyashev R. M., Hayes P. M., Chen F. Q., Lapitan N., Fenwick A., Blake T. K., Kanazin V., Ananiev E., Dahleen L., Kudrna D. A., Bollinger J., Knapp S. J., Liu B., Sorrells M., Huen M., Franckowiak J. D., Hoffman D., Skadsen R. and Steffenson B. J. 1993. A molecular, isozyme, and morphological map of the barley (Hordeum vulgare ) genome. Theor. Appl. Genet. 86: 705-712.

    Google Scholar 

  • Lander E. S. and Botstein D. 1989. Mapping Mendelian factors underlying quantitative traits using RFPL linkage maps. Genetics 121: 185-199.

    Google Scholar 

  • Marquez-Cedillo L. A., Hayes P. M., Kleinhofs A., Legge W. G., Rossnagel B. G., Sato K., Ullrich S. E., Wesenberg D. M. and The North American Barley Genome Mapping Project. 2001. QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor. Appl. Genet. 103: 625-637.

    Google Scholar 

  • Mather D. E., Tinker N. A., LaBerge B. E., Edney M., Jones B. L., Rossnagel B. G., Legge W. G., Briggs K. G., Irvine R. B., Falk D. E. and Kasha K. J. 1997. Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci. 37: 544-554.

    Google Scholar 

  • Mesfin A., Smith K. P., Dill-Macky R., Evans C. K., Waugh R., Gustus C. D. and Muehlbauer G. J. 2003. Quantitative trait loci 472 for Fusarium head blight resistance in barley detected in a tworowed by six-rowed population. Crop Sci. 43: 307-318.

    Google Scholar 

  • Moreau L., Charcosset A., Hospital F. and Gallais A. 1998. Marker-assisted selection efficiency in populations of finite size. Genetics 148: 1353-1365.

    Google Scholar 

  • Paterson A. H., DeVerna J. W., Lanini B. and Tanksley S. D. 1990. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124: 735-742.

    Google Scholar 

  • Paterson A. H., Damon S., Hewitt J. D., Zamir D., Rabinowitch H. D., Lincoln S. E., Lander E. S. and Tanksley S. D. 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127: 181-197.

    Google Scholar 

  • Romagosa I., Ullrich S. E., Han F., Hayes P. M. and the North American Barley Genome Mapping Project. 1996. Use of the additive main effects and multiplicative interaction model in QTL mapping for adaptation in barley. Theor. Appl. Genet. 96: 30-37.

    Google Scholar 

  • Romagosa I., Han F., Ullrich S. E., Hayes P. M. and Wesenberg D. M. 1999. Verification of yield QTL through realized molecular marker-assisted selection response in a barley cross. Mol. Breed. 5: 143-152.

    Google Scholar 

  • SAS Institute Inc. 1988. SAS Users Guide: Statistics. SAS Institute, Cary, North Carolina, USA.

    Google Scholar 

  • Schmierer D. A. 2002. Molecular marker-assisted selection for yield in traditional malting barley cultivars. Thesis (M. S.) Washington State University, Pullman, Washington, USA.

    Google Scholar 

  • Stuber C. W. 1994. Breeding multigenic traits. In: Phillips R. L. and Vasil I. K. (eds), DNA-based markers in plants. Kluwer Academic Publishers, The Netherlands, pp. 97-115.

    Google Scholar 

  • Takahashi Y., Shomura A., Sasaki T. and Yano M. 2001. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the subunit of protein kinase CK2. Proc. Natl. Acad. Sci. USA 98: 7922-7927.

    Google Scholar 

  • Tanksley S. D. and Nelson J. C. 1996. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor. Appl. Genet. 92: 191-203.

    Google Scholar 

  • Thoday J. M. 1961. Location of polygenes. Nature 191: 368-370.

    Google Scholar 

  • Zhu H., Briceno G., Dovel R., Hayes P. M., Liu B. H., Liu C. T. and Ullrich S. E. 1999. Molecular breeding for grain yield in barley: an evaluation of QTL effects in a spring barley cross. Theor. Appl. Genet. 98: 772-779.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andris Kleinhofs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmierer, D.A., Kandemir, N., Kudrna, D.A. et al. Molecular marker-assisted selection for enhanced yield in malting barley. Molecular Breeding 14, 463–473 (2004). https://doi.org/10.1007/s11032-004-0903-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-004-0903-1

Navigation