Skip to main content
Log in

Semicircle Law for Generalized Curie–Weiss Matrix Ensembles at Subcritical Temperature

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Hochstättler et al. (J Theor Probab 29:1047–1068, 2016) showed that the semicircle law holds for generalized Curie–Weiss matrix ensembles at or above the critical temperature. We extend their result to the case of subcritical temperatures for which the correlations between the matrix entries are stronger. Nevertheless, one may use the concept of approximately uncorrelated ensembles that was first introduced in Hochstättler et al. (2016). In order to do so, one needs to remove the average magnetization of the entries by an appropriate modification of the ensemble that turns out to be of rank 1, thus not changing the limiting spectral measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Arnold, L.: On the asymptotic distribution of the eigenvalues of random matrices. J. Math. Anal. Appl. 20, 262–268 (1967)

    Article  MathSciNet  Google Scholar 

  3. Arnold, L.: On Wigner’s semicircle law for the eigenvalues of random matrices. Z. Wahrscheinlichkeitstheorie verw. Geb. 19, 191–198 (1971)

    Article  MathSciNet  Google Scholar 

  4. Bai, Z., Silverstein, J.: Spectral Analysis of Large Dimensional Random Matrices. Springer, New York (2010)

    Book  Google Scholar 

  5. Bryc, W., Dembo, A., Jiang, T.: Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Prob. 34, 1–38 (2006)

    Article  MathSciNet  Google Scholar 

  6. Ellis, R.: Entropy, Large Deviations, and Statistical Mechanics. Springer, New York (2006)

    Book  Google Scholar 

  7. Friesen, O., Löwe, M.: The semicircle law for matrices with independent diagonals. J. Theor. Probab. 26, 1084–1096 (2013)

    Article  MathSciNet  Google Scholar 

  8. Friesen, O., Löwe, M.: A phase transition for the limiting spectral density of random matrices. Electron. J. Probab. 18, 1–17 (2013)

    Article  MathSciNet  Google Scholar 

  9. Füredi, Z., Komlós, J.: The eigenvalues of random symmetric matrices. Combinatorica 1(3), 233–241 (1981)

    Article  MathSciNet  Google Scholar 

  10. Götze, F., Naumov, A., Tikhomirov, A.: Limit theorems for two classes of random matrices with dependent entries. Theory Probab. Appl. 59, 23–39 (2015)

    Article  MathSciNet  Google Scholar 

  11. Götze, F., Tikhomirov, A.: Limit theorems for spectra of random matrices with martingale structure. Theory Probab. Appl. 51, 42–64 (2007)

    Article  MathSciNet  Google Scholar 

  12. Grenander, U.: Probabilities on Algebraic Structures. Wiley (1968)

  13. Hochstättler, W., Kirsch, W., Warzel, S.: Semicircle law for a matrix ensemble with dependent entries. J. Theor. Probab. 29, 1047–1068 (2016)

    Article  MathSciNet  Google Scholar 

  14. Hofmann-Credner, K., Stolz, M.: Wigner theorems for random matrices with dependent entries: ensembles associated to symmetric spaces and sample covariance matrices. Electron. Commun. Probab. 13, 401–414 (2008)

    Article  MathSciNet  Google Scholar 

  15. Kirsch, W.: Moments in Probability, book in preparation, to appear at DeGruyter

  16. Kirsch, W., Kriecherbauer, T.: Sixty years of moments for random matrices, Preprint arXiv:1612.06725 to appear in: F. Gesztesy et al (eds.) Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. A Volume in Honor of Helge Holden’s 60th Birthday, EMS Congress Reports

  17. Kirsch, W., Kriecherbauer, T.: Largest and second largest singular values of de Finetti random matrices; in preparation

  18. Marchenko, V., Pastur, L.: Distribution of eigenvalues in certain sets of random matrices. Math. USSR-Sbornik 1, 457–483 (1967)

    Article  Google Scholar 

  19. Löwe, M., Schubert, K.: On the limiting spectral density of random matrices filled with stochastic processes, to appear in: Random Oper. Stoch. Equ. arXiv:1512.02498

  20. Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974)

    MATH  Google Scholar 

  21. Pastur, L.: On the spectrum of random matrices. Theor. Math. Phys. 10(1), 67–74 (1972)

    Article  MathSciNet  Google Scholar 

  22. Pastur, L.: Spectra of random selfadjoint operators. Russian Math. Surv. 28, 1–67 (1973)

    Article  MathSciNet  Google Scholar 

  23. Pastur, L., Sherbina M.: Eigenvalue distribution of large random matrices. Math. Surv. Monogr. 171, AMS (2011)

  24. Schenker, J., Schulz-Baldes, H.: Semicircle law and freeness for random matrices with symmetries or correlations. Math. Res. Lett. 12, 531–542 (2005)

    Article  MathSciNet  Google Scholar 

  25. Tao, T.: Topics in Random Matrix Theory. AMS, Providence (2012)

    Book  Google Scholar 

  26. Thompson, C.: Mathematical Statistical Mechanics. Princeton University Press, Princeton (1979)

    MATH  Google Scholar 

  27. Wigner, E.: Characteristic vectors of bordered matrices with infinite dimension. Ann. Math. 62, 548–564 (1955)

    Article  MathSciNet  Google Scholar 

  28. Wigner, E.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325–328 (1958)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author would like to thank the Lehrgebiet Stochastics at the FernUniversität in Hagen, where most of the work was accomplished, for support and great hospitality. The authors are grateful to Michael Fleermann for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Kirsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirsch, W., Kriecherbauer, T. Semicircle Law for Generalized Curie–Weiss Matrix Ensembles at Subcritical Temperature. J Theor Probab 31, 2446–2458 (2018). https://doi.org/10.1007/s10959-017-0768-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-017-0768-y

Keywords

Mathematics Subject Classification (2010)

Navigation