Skip to main content

Advertisement

Log in

Ultrafine high performance polyethylene fibers

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Stiff, strong and tough ultrafine polyethylene fibers that rival the best high performance fibers, but with diameters less than one micron, are fabricated for the first time by “gel-electrospinning.” In this process, solution concentration and process temperatures are chosen to induce the formation of gel filaments “in flight,” which are subsequently drawn at high rates as a consequence of the whipping instability. The resulting submicron-diameter fibers exhibited Young’s moduli of 73 ± 13 GPa, yield strengths of 3.5 ± 0.6 GPa, and toughnesses of 1.8 ± 0.3 GPa, on average. Among the smallest fibers examined, one with a diameter of 490 ± 50 nm showed a Young’s modulus of 110 ± 16 GPa, ultimate tensile strength of 6.3 ± 0.9 GPa, and toughness of 2.1 ± 0.3 GPa, a combination of mechanical properties that is unparalleled among polymer fibers to date. The correlation of stiffness, strength and toughness with fiber diameter is attributed to high crystallinity and crystallite orientation, combined with fewer defects and enhanced chain slip associated with small diameter and high specific surface area. Gel-electrospinning improves the prospects for production of such fibers at scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl Phys Lett 78:1149–1151

    Article  Google Scholar 

  2. Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87:4531–4547

    Article  Google Scholar 

  3. Liu C, Hsu P-C, Lee HW et al (2015) Transparent air filter for high-efficiency PM2.5 capture. Nat Commun 6:6205

    Article  Google Scholar 

  4. Gopa R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586

    Article  Google Scholar 

  5. Chattopadhyay S, Hatton TA, Rutledge GC (2016) Aerosol filtration using electrospun cellulose acetate fibers. J Mater Sci 51:204–217. doi:10.1007/s10853-015-9286-4

    Article  Google Scholar 

  6. Choong LT, Khan Z, Rutledge GC (2014) Permeability of electrospun fiber mats under hydraulic flow. J Membr Sci 451:111–116

    Article  Google Scholar 

  7. Wang L, Yu Y, Chyen PC, Zhang DW, Chen CH (2008) Electrospinning synthesis of C/Fe 3 O 4 composite nanofibers and their application for high performance lithium-ion batteries. J Power Sour 183:717–723

    Article  Google Scholar 

  8. Kim C, Yang S, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv Funct Mater 16:2393–2397

    Article  Google Scholar 

  9. Kim YS, Shoorideh G, Zhmayev Y, Lee J, Li Z, Patel B, Chakrapani S, Park JH, Lee S, Joo YL (2015) The critical contribution of unzipped graphene nanoribbons to scalable silicon–carbon fiber anodes in rechargeable Li-ion batteries. Nano Energy 16:446–457

    Article  Google Scholar 

  10. Wang X, Drew C, Lee SH, Senecal KJ, Kumar J, Samuelson LA (2002) Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett 2:1273–1275

    Article  Google Scholar 

  11. Ding B, Wang M, Wang X, Yu J, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13:16–27

    Article  Google Scholar 

  12. Park JH, Joo YL (2014) Tailoring nanorod alignment in a polymer matrix by elongational flow under confinement: simulation, experiments, and surface enhanced Raman scattering application. Soft Matter 10:3494–3505

    Article  Google Scholar 

  13. Mo X, Xu CY, Kotaki M, Ramakrishna S (2004) Electrospun P (LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25:1883–1890

    Article  Google Scholar 

  14. Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322

    Article  Google Scholar 

  15. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211

    Article  Google Scholar 

  16. Liu W, Thomopoulos S, Xia Y (2012) Electrospun nanofibers for regenerative medicine. Adv Healthcare Mater 1:10–25

    Article  Google Scholar 

  17. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006

    Article  Google Scholar 

  18. Chew SY, Hufnagel TC, Lim CT, Leong KW (2006) Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology 17:3880–3891

    Article  Google Scholar 

  19. Wong SC, Baji A, Leng S (2008) Effect of fiber diameter on tensile properties of electrospun poly (ε-caprolactone). Polymer 49:4713–4722

    Article  Google Scholar 

  20. Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y (2007) Novel method for mechanical characterization of polymeric nanofibers. Rev Sci Instrum 78:085108

    Article  Google Scholar 

  21. Finn N (2013) Types of smart materials for Protection. In: Chapman R (ed) Smart textiles for protection, Woodhead Publishing, Cambridge, UK

    Google Scholar 

  22. Pai CL, Boyce MC, Rutledge GC (2011) Mechanical properties of individual electrospun PA 6 (3) T fibers and their variation with fiber diameter. Polymer 52:2295–2301

    Article  Google Scholar 

  23. Pai CL, Boyce MC, Rutledge GC (2011) On the importance of fiber curvature to the elastic moduli of electrospun nonwoven fiber meshes. Polymer 52:6126–6133

    Article  Google Scholar 

  24. Ji Y, Li B, Ge S, Sokolov JC, Rafailovich MH (2006) Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers. Langmuir 22:1321–1328

    Article  Google Scholar 

  25. Arinstein A, Burman M, Gendelman O, Zussman E (2007) Effect of supramolecular structure on polymer nanofibre elasticity. Nat Nanotechnol 2:59–62

    Article  Google Scholar 

  26. Richard-Lacroix M, Pellerin C (2013) Molecular orientation in electrospun fibers: from mats to single fibers. Macromolecules 46:9473–9493

    Article  Google Scholar 

  27. Reneker DH, Yarin AL, Zussman E, Xu H (2007) Electrospinning of nanofibers from polymer solutions and melts. In: Hassan A, van der Erik G (eds) Advances in applied mechanics, vol 41. Elsevier, Amsterdam, pp 43–346

    Google Scholar 

  28. Greenfeld I, Sui XM, Wagner HD (2016) Stiffness, strength, and toughness of electrospun nanofibers: effect of flow-induced molecular orientation. Macromolecules 49:6518–6530

    Article  Google Scholar 

  29. Papkov D, Zou Y, Andalib MN, Goponenko A, Cheng SZD, Dzenis YA (2013) Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano 7:3324–3331

    Article  Google Scholar 

  30. Yao J, Jin J, Lepore E, Pugno NM, Bastiaansen CWM, Peijs T (2015) Electrospinning of p-Aramid fibers. Macromol Mater Eng 12:1238–1245

    Article  Google Scholar 

  31. Yao J, Pantano MF, Pugno NM, Bastiaansen CWM, Peijs T (2015) High-performance electrospun co-polyimide nanofibers. Polymer 76:105–112

    Article  Google Scholar 

  32. Almecija D, Blond D, Sader JE, Coleman JN, Boland JJ (2009) Mechanical properties of individual electrospun polymer-nanotube composite nanofibers. Carbon 47:2253–2258

    Article  Google Scholar 

  33. Park JH, Rutledge GC (2017) 50th anniversary perspective: advanced polymer fibers: high performance and ultrafine. Macromolecules 50:5627–5642

    Article  Google Scholar 

  34. Lacks DJ, Rutledge GC (1994) Simulation of the temperature dependence of mechanical properties of polyethylene. J Phys Chem 98:1222–1231

    Article  Google Scholar 

  35. Smith P, Lemstra PJ (1980) Ultra-high-strength polyethylene filaments by solution spinning/drawing. J Mater Sci 15:505–514. doi:10.1007/BF02396802

    Article  Google Scholar 

  36. Ward IM, Lemstra PJ (2009) Production and properties of high-modulus and high-strength polyethylene fibres. In: Eichhorn et al. (ed) Handbook of textile fiber structure, ch 12, vol 1. Woodhead Publishing, Cambridge UK, pp 352–393

  37. Yao J, Bastiaansen CMW, Peijs T (2014) High strength and high modulus electrospun nanofibers. Fibers 2:158–186

    Article  Google Scholar 

  38. Larrondo L, St. John Manley R (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci Phys 19:909–920

    Article  Google Scholar 

  39. Givens SR, Gardner KH, Rabolt JF, Chase DB (2007) High-temperature electrospinning of polyethylene microfibers from solution. Macromolecules 40:608–610

    Article  Google Scholar 

  40. Yoshioka T, Dersch R, Greiner A, Tsuji M, Schaper AK (2010) Highly oriented crystalline pe nanofibrils produced by electric-field-induced stretching of electrospun wet fibers. Macromol Mater Eng 295:1082–1089

    Article  Google Scholar 

  41. Rein DM, Shavit-Hadar L, Khalfin RL, Cohen Y, Shuster K, Zussman E (2007) Electrospinning of ultrahigh-molecular-weight polyethylene nanofibers. J Polym Sci Phys 45:766–773

    Article  Google Scholar 

  42. Rein DM, Cohen Y, Ronen A, Shuster K, Zussman E (2009) Application of gentle annular gas veil for electrospinning of polymer solutions and melts. Polym Eng Sci 49:774–782

    Article  Google Scholar 

  43. Li P, Hu L, McGaughey AJH, Shen S (2014) Crystalline polyethylene nanofibers with the theoretical limit of young’s modulus. Adv Mater 26:1065–1070

    Article  Google Scholar 

  44. Haynes WM (2016) CRC handbook of chemistry and physics, 97th edn. CRC Press, Boca Raton

    Google Scholar 

  45. Ward IM (1983) Mechanical properties of solid polymers, 2nd edn. Wiley, New York

    Google Scholar 

  46. Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26:895–944

    Article  Google Scholar 

  47. Grubb DT, Keller A (1978) Thermal contraction and extension in fibrous crystals of polyethylene. Colloid Polym Sci 256:218–233

    Article  Google Scholar 

  48. Yoshioka T, Dersch R, Tsuji M, Schaper AK (2010) Orientation analysis of individual electrospun PE nanofibers by transmission electron microscopy. Polymer 51:2383–2389

    Article  Google Scholar 

  49. GUR® 4120; MSDS No.21003915; Ticona: Florence, KY November 02 (2010)

  50. Litvinov VM, Xu J, Melian C, Demco DE, Möller M, Simmelink J (2011) Morphology, chain dynamics, and domain sizes in highly drawn gel-spun ultrahigh molecular weight polyethylene fibers at the final stages of drawing by SAXS, WAXS, and 1H solid-state NMR. Macromolecules 44:9254–9266

    Article  Google Scholar 

  51. Ohta Y, Murase H, Hashimoto T (2005) Effects of spinning conditions on the mechanical properties of ultrahigh-molecular-weight polyethylene fibers. J Polym Sci B 43:2639–2652

    Article  Google Scholar 

  52. McKinley GH, Sridhar T (2002) Filament-stretching rheometry of complex fluids. Annu Rev Fluid Mech 34:375–415

    Article  Google Scholar 

  53. Fridrikh SV, Yu JH, Brenner MP, Rutledge GC (2003) Controlling the fiber diameter during electrospinning. Phys Rev Lett 90:144502

    Article  Google Scholar 

  54. Rein DM, Cohen Y, Lipp J, Zussman E (2010) Elaboration of ultra-high molecular weight polyethylene/carbon nanotubes electrospun composite fibers. Macromol Mater Eng 295:1003–1008

    Article  Google Scholar 

  55. Chae HG, Kumar S (2006) Rigid-rod polymeric fibers. J Appl Polym Sci 100:791–802

    Article  Google Scholar 

  56. Jenket DR, Forster AM, Paulter NG, Weerasooriya T, Gunnarsson CA, Al-Sheikhly M (2017) An investigation of the temperature and strain-rate effects on strain-to-failure of UHMWPE fibers. In: Antoun et al (ed) Challenges in mechanics of time-dependent materials, ch 4, vol 2B. Springer, New York, pp 23–33

  57. Peterlin A (1971) Molecular model of drawing polyethylene and polypropylene. J Mater Sci 6:490–508. doi:10.1007/BF00550305

    Article  Google Scholar 

  58. Jiang Z, Tang Y, Rieger J et al (2009) Structural evolution of tensile deformed high-density polyethylene at elevated temperatures: scanning synchrotron small- and wide-angle X-ray scattering studies. Polymer 50:4101–4111

    Article  Google Scholar 

  59. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc A 221:163–198

    Article  Google Scholar 

  60. Williams JR (1978) Applications of linear fracture mechanics. Adv Polym Sci 27:69–120

    Google Scholar 

  61. Penning JP, De Vries AA, Van der Ven J, Pennings AJ, Hoogstraten HW (1994) A study of transverse and longitudinal size effects in high-strength polyethylene fibres. Philos Mag 69:267–284

    Article  Google Scholar 

  62. Smook J, Hamersma W, Pennings AJ (1984) The fracture process of ultra-high strength polyethylene fibres. J Mater Sci 19:1359–1373. doi:10.1007/BF01120049

    Article  Google Scholar 

  63. Hoogstein W, ten Brinke G, Pennings AJ (1988) DSC experiments on gel-spun polyethylene fibers. Colloid Polym Sci 266:1003–1013

    Article  Google Scholar 

  64. O’Connor TC, Robbins MO (2016) Chain ends and the ultimate tensile strength of polyethylene fibers. ACS Macro Lett 5:263–267

    Article  Google Scholar 

  65. Bastiaansen CMW (1992) Tensile strength of solution-spun, ultra-drawn ultra-high molecular weight polyethylene fibres: 1. Influence of fibre diameter. Polymer 33:1649–1652

    Article  Google Scholar 

  66. Strawhecker KE, Sandoz-Rosado EJ, Stockdale TA, Laird ED (2016) Interior morphology of high-performance polyethylene fibers revealed by modulus mapping. Polymer 103:224–232

    Article  Google Scholar 

  67. Termonia Y, Meakin P, Smith P (1985) Theoretical study of the influence of the molecular weight on the maximum tensile strength of polymer fibers. Macromolecules 18:2246–2252

    Article  Google Scholar 

  68. Wang S, Shan Z, Huang H (2017) Mechanical properties of nanowires. Adv Sci 4:1600332

    Article  Google Scholar 

  69. Lu Y, Song J, Huang JY, Lou J (2011) Fracture of sub-20 nm ultrathin gold nanowires. Adv Funct Mater 21:3982–3989

    Article  Google Scholar 

  70. Wang L, Liu P, Guan P et al (2013) In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat Commun 4:2413

    Google Scholar 

  71. Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the U.S. Army through the Natick Soldier Research, Development and Engineering Center (NSRDEC). The authors are grateful to the US Army-funded Institute for Soldier Nanotechnologies (ISN) and the National Science Foundation-funded Center for Materials Science and Engineering (CMSE) for use of facilities and equipment. This work made use of the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under award number DMR-14-19807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory C. Rutledge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2017_1724_MOESM1_ESM.pdf

S1: Results using different solvents. S2: WAXD data. S3: Detailed description of individual fiber mechanical test. S4: Testing for a possible clamp slippage. S5: Validation of mechanical testing using Dyneema SK99. S6: DSC data. S7: Yield strength vs diameter and limiting tensile strength. S8: Results of individual fiber tests and reproducibility. (PDF 2172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.H., Rutledge, G.C. Ultrafine high performance polyethylene fibers. J Mater Sci 53, 3049–3063 (2018). https://doi.org/10.1007/s10853-017-1724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1724-z

Keywords

Navigation