Skip to main content

Advertisement

Log in

Nutrient addition affects net and gross mineralization of phosphorus in the organic layer of a tropical montane forest

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

In tropical ecosystems with highly weathered soils, transformation of organic phosphorus (P) to bioavailable inorganic P plays a crucial role for the nutrition of organisms. In these ecosystems, P is suspected to be growth-limiting and might therefore be affected by atmospheric nutrient deposition occurring even in remote areas such as montane rainforests. We assessed effects of P and nitrogen (N) addition on net and gross P mineralization rates, and microbial P immobilization in the organic layer along an altitudinal gradient of a tropical montane rainforest in Ecuador. Net P mineralization rates amounted to 1.8 ± 0.9 (at 1000 m a.s.l.), 3.7 ± 0.6 (at 2000 m) and 2.0 ± 0.4 (at 3000 m) mg P kg−1 day−1. Altitudinal differences led to an increased microbial P immobilization at 1000 m compensating for a higher gross P mineralization. P addition increased net P mineralization rates at 2000 and 3000 m, suggesting a higher P demand at 1000 m. At higher altitudes, P likely was released as a by-product during organic matter decomposition. Gross P mineralization, determined by means of the isotopic dilution approach, could not be calculated for control and N treatments due to rapid microbial P immobilization. For P (+N) treatments, gross P mineralization rates were lowest at the 1000 m site towards the end of the long-term incubation period. Atmospheric P deposition in the tropics might lead to P fertilization effects through direct input as well as through acceleration of P release from organic matter, thereby increasing P availability for organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achat D, Bakker M, Augusto L, Saur E, Dousseron L, Morel C (2009) Evaluation of the phosphorus status of P-deficient podzols in temperate pine stands: combining isotopic dilution and extraction methods. Biogeochemistry 92(3):183–200

    Article  Google Scholar 

  • Achat DL, Bakker MR, Saur E, Pellerin S, Augusto L, Morel C (2010) Quantifying gross mineralizations of P in dead soil organic matter: testing an isotopic dilution method. Geoderma 158(3–4):163–172

    Article  Google Scholar 

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124(4):561–582

    Article  Google Scholar 

  • Boy J, Rollenbeck R, Valarezo C, Wilcke W (2008) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Glob Biogeochem Cycles 22(4):11

    Article  Google Scholar 

  • Bünemann EK (2015) Assessment of gross and net mineralization rates of soil organic phosphorus – A review. Soil Biol Biochem 89:82–98

    Article  Google Scholar 

  • Bünemann EK, Marschner P, McNeill AM, McLaughlin MJ (2007) Measuring rates of gross and net mineralisation of organic phosphorus in soils. Soil Biol Biochem 39(4):900–913

    Article  Google Scholar 

  • Bünemann EK, Oberson A, Liebisch F, Keller F, Annaheim KE, Huguenin-Elie O, Frossard E (2012) Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability. Soil Biol Biochem 51:84–95

    Article  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2002) Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D. Don.). Soil Biol Biochem 34(4):487–499

    Article  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2003) Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. For Ecol Manag 177(1–3):539–557

    Article  Google Scholar 

  • Clarholm M (1993) Microbial biomass P, labile P, and acid phosphatase activity in the humus layer of a spruce forest, after repeated additions of fertilizers. Biol Fertil Soils 16(4):287–292

    Article  Google Scholar 

  • Dietrich K, Spoeri E, Oelmann Y (2016) Nutrient addition modifies phosphatase activities along an altitudinal gradient in a tropical montane forest in Southern Ecuador. Front Earth Sci 4:12

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10(12):1135–1142

    Article  Google Scholar 

  • Fardeau JC (1993) Le phosphore assimilable des sols: sa représentation par un modèle fonctionnel à plusieurs compartiments. Agronomie 13(4):317–331

    Article  Google Scholar 

  • Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH (2013) Nutrient limitation in rainforests and cloud forests along a 3000-m elevation gradient in the Peruvian Andes. Oecologia 172(3):889–902

    Article  Google Scholar 

  • Frossard E, Feller C, Tiessen H, Stewart J, Fardeau J, Morel J (1993) Can an isotopic method allow for the determination of the phosphate-fixing capacity of soils? Commun Soil Sci Plant Anal 24(5–6):367–377

    Article  Google Scholar 

  • Graefe S, Hertel D, Leuschner C (2010) N, P and K limitation of fine root growth along an elevation transect in tropical mountain forests. Acta Oecol 36(6):537–542

    Article  Google Scholar 

  • Grierson PF, Comerford NB, Jokela EJ (1998) Phosphorus mineralization kinetics and response of microbial phosphorus to drying and rewetting in a Florida Spodosol. Soil Biol Biochem 30(10–11):1323–1331

    Article  Google Scholar 

  • Hamer U, Potthast K, Wilcke W, Wullaert H, Valarezo C, Sandmann D, Maraun M, Scheu S, Homeier J (2013) Nutrient additions affecting matter turnover in forest and pasture ecosystems. In: Bendix J, Beck E, Bräuning A, Makeschin F, Mosandl R, Scheu S, Wilcke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Ecological studies. Springer, Heidelberg, pp 297–313

    Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80(4):1150–1156

    Article  Google Scholar 

  • Heuck C, Spohn M (2016) Carbon, nitrogen and phosphorus net mineralization in organic horizons of temperate forests: stoichiometry and relations to organic matter quality. Biogeochemistry 131(1):229–242

    Article  Google Scholar 

  • Homeier J, Werner F, Gradstein S, Breckle S, Richter M (2008) Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. Ecol Stud 198:87

    Article  Google Scholar 

  • Homeier J, Breckle S-W, Günter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42(2):140–148

    Article  Google Scholar 

  • Homeier J, Hertel D, Camenzind T, Cumbicus NL, Maraun M, Martinson GO, Poma LN, Rillig MC, Sandmann D, Scheu S, Veldkamp E, Wilcke W, Wullaert H, Leuschner C (2012) Tropical Andean forests are highly susceptible to nutrient inputs—rapid effects of experimental N and P addition to an Ecuadorian montane forest. PLoS ONE 7(10):e47128

    Article  Google Scholar 

  • Homeier J, Leuschner C, Bräuning A, Cumbicus NL, Hertel D, Martinson GO, Spannl S, Veldkamp E (2013) Effects of nutrient addition on the productivity of montane forests and implications for the carbon cycle. In: Bendix J, Beck E, Bräuning A, Makeschin F, Mosandl R, Scheu S, Wilcke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Springer, Berlin, pp 315–329

    Chapter  Google Scholar 

  • Illig J, Schatz H, Scheu S, Maraun M (2008) Decomposition and colonization by micro-arthropods of two litter types in a tropical montane rain forest in southern Ecuador. J Trop Ecol 24(2):157–167

    Article  Google Scholar 

  • Iost S, Makeschin F, Abiy M, Haubrich F (2008) Biotic soil activities. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, New York, pp 217–227

    Chapter  Google Scholar 

  • Johnson A, Frizano J, Vann D (2003) Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia 135(4):487–499

    Article  Google Scholar 

  • Kouno K, Tuchiya Y, Ando T (1995) Measurement of soil microbial biomass phosphorus by an anion-exchange membrane method. Soil Biol Biochem 27(10):1353–1357

    Article  Google Scholar 

  • Krashevska V, Maraun M, Ruess L, Scheu S (2010) Carbon and nutrient limitation of soil microorganisms and microbial grazers in a tropical montane rain forest. Oikos 119(6):1020–1028

    Article  Google Scholar 

  • Krashevska V, Sandmann D, Maraun M, Scheu S (2014) Moderate changes in nutrient input alter tropical microbial and protist communities and belowground linkages. ISME J 8(5):1126–1134

    Article  Google Scholar 

  • Lopez-Hernandez D, Brossard M, Frossard E (1998) P-Isotopic exchange values in relation to Po mineralisation in soils with very low P-sorbing capacities. Soil Biol Biochem 30(13):1663–1670

    Article  Google Scholar 

  • Marklein AR, Houlton BZ (2012) Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol 193(3):696–704

    Article  Google Scholar 

  • McGilI WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–286

    Article  Google Scholar 

  • McLaughlin MJ, Alston AM, Martin JK (1986) Measurement of phosphorus in the soil microbial biomass—a modified procedure for field soils. Soil Biol Biochem 18(4):437–443

    Article  Google Scholar 

  • Moser G, Hertel D, Leuschner C (2007) Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10(6):924–935

    Article  Google Scholar 

  • Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S (2011) Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Change Biol 17(6):2211–2226

    Article  Google Scholar 

  • Müller C, Bünemann EK (2014) A 33P tracing model for quantifying gross P transformation rates in soil. Soil Biol Biochem 76:218–226

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  Google Scholar 

  • Oehl F, Oberson A, Sinaj S, Frossard E (2001) Organic phosphorus mineralization studies using isotopic dilution techniques. Soil Sci Soc Am J 65(3):780–787

    Article  Google Scholar 

  • Olander LP, Vitousek PM (2004) Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. Ecosystems 7(4):404–419

    Article  Google Scholar 

  • Peters T, Drobnik T, Meyer H, Rankl M, Richter M, Rollenbeck R, Thies B, Bendix J (2013) Environmental changes affecting the Andes of Ecuador. In: Bendix J, Beck E, Bräuning A, Makeschin F, Mosandl R, Scheu S, Wilcke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Springer, New York, pp 19–29

    Chapter  Google Scholar 

  • Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Change Biol 12(3):470–476

    Article  Google Scholar 

  • Röderstein M, Hertel D, Leuschner C (2005) Above- and below-ground litter production in three tropical montane forests in southern Ecuador. J Trop Ecol 21(05):483–492

    Article  Google Scholar 

  • Ross DJ, Tate KR, Scott NA, Feltham CW (1999) Land-use change: effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems. Soil Biol Biochem 31(6):803–813

    Article  Google Scholar 

  • Skujiņš J, Burns R (1976) Extracellular enzymes in soil. Crit Rev Microbiol 4(4):383–421

    Article  Google Scholar 

  • Spohn M (2016) Element cycling as driven by stoichiometric homeostasis of soil microorganisms. Basic Appl Ecol 17:471–478

    Article  Google Scholar 

  • Spohn M, Kuzyakov Y (2013) Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol Biochem 61:69–75

    Article  Google Scholar 

  • Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79(1):10–22

    Article  Google Scholar 

  • Velescu A, Valarezo C, Wilcke W (2016) Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador. Front Earth Sci 4:58

    Article  Google Scholar 

  • Vitousek P (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119(4):553–572

    Article  Google Scholar 

  • Vitousek PM, Sanford RL Jr (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Article  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15(1):1–19

    Article  Google Scholar 

  • Wardle DA (1998) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67(3):321–358

    Article  Google Scholar 

  • Wilcke W, Yasin S, Abramowski U, Valarezo C, Zech W (2002) Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. Eur J Soil Sci 53(1):15–27

    Article  Google Scholar 

  • Wilcke W, Oelmann Y, Schmitt A, Valarezo C, Zech W, Homeier J (2008) Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J Plant Nutr Soil Sci 171(2):220–230

    Article  Google Scholar 

  • Wilcke W, Leimer S, Peters T, Emck P, Rollenbeck R, Trachte K, Valarezo C, Bendix J (2013) The nitrogen cycle of tropical montane forest in Ecuador turns inorganic under environmental change. Glob Biogeochem Cycles 27(4):1194–1204

    Article  Google Scholar 

  • Wolf K, Veldkamp E, Homeier J, Martinson GO (2011) Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Glob Biogeochem Cycles. doi:10.1029/2010GB003876

    Google Scholar 

  • WRB IWG (2015) World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. In: World soil resources reports. FAO, Rome

  • Wullaert H, Homeier J, Valarezo C, Wilcke W (2010) Response of the N and P cycles of an old-growth montane forest in Ecuador to experimental low-level N and P amendments. For Ecol Manag 260(9):1434–1445

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Deutsche Forschungsgemeinschaft (DFG PAK 823) and the University of Tübingen. We thank the Ministerio de Ambiente del Ecuador for the research permit and Nature and Cultural International (NCI) in Loja and the San Francisco research station. We would like to thank the Laboratory for Radioisotopes (LARI), Georg-August-University Göttingen, for providing technical support and working space. We appreciate very much the support of Emmanuel Münch and Elena Spoeri who kindly assisted in the soil sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Oelmann.

Additional information

Responsible Editor: Christine Hawkes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietrich, K., Spohn, M., Villamagua, M. et al. Nutrient addition affects net and gross mineralization of phosphorus in the organic layer of a tropical montane forest. Biogeochemistry 136, 223–236 (2017). https://doi.org/10.1007/s10533-017-0392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0392-z

Keywords

Navigation