Skip to main content
Log in

Differential forms on log canonical spaces

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

The present paper is concerned with differential forms on log canonical varieties. It is shown that any p-form defined on the smooth locus of a variety with canonical or klt singularities extends regularly to any resolution of singularities. In fact, a much more general theorem for log canonical pairs is established. The proof relies on vanishing theorems for log canonical varieties and on methods of the minimal model program. In addition, a theory of differential forms on dlt pairs is developed. It is shown that many of the fundamental theorems and techniques known for sheaves of logarithmic differentials on smooth varieties also hold in the dlt setting.

Immediate applications include the existence of a pull-back map for reflexive differentials, generalisations of Bogomolov-Sommese type vanishing results, and a positive answer to the Lipman-Zariski conjecture for klt spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Barlet, Le faisceau \(\omega ^{\cdot }_{X}\) sur un espace analytique X de dimension pure, in Fonctions de plusieurs variables complexes III (Sém. François Norguet, 1975–1977), Lecture Notes in Math., vol. 670, pp. 187—204, Springer, Berlin, 1978. MR0521919 (80i:32037).

    Chapter  Google Scholar 

  2. M. C. Beltrametti and A. J. Sommese, The Adjunction Theory of Complex Projective Varieties, de Gruyter Expositions in Mathematics, vol. 16, de Gruyter, Berlin, 1995. 96f:14004.

    MATH  Google Scholar 

  3. C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, J. Am. Math. Soc., 23 (2010), 405–468. doi:10.1090/S0894-0347-09-00649-3.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Campana, Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble), 54 (2004), 499–630. MR2097416 (2006c:14013).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. A. Carlson, Polyhedral resolutions of algebraic varieties, Trans. Am. Math. Soc., 292 (1985), 595–612. MR808740 (87i:14008).

    Article  MATH  Google Scholar 

  6. A. Corti et al., Flips for 3-Folds and 4-Folds, Oxford Lecture Series in Mathematics and Its Applications, vol. 35, Oxford University Press, Oxford, 2007. MR2352762 (2008j:14031).

    Book  MATH  Google Scholar 

  7. P. Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, vol. 163, Springer, Berlin, 1970. 54 #5232.

    MATH  Google Scholar 

  8. P. Du Bois, Complexe de de Rham filtré d’une variété singulière, Bull. Soc. Math. Fr., 109 (1981), 41–81. MR613848 (82j:14006).

    MATH  Google Scholar 

  9. P. Du Bois and P. Jarraud, Une propriété de commutation au changement de base des images directes supérieures du faisceau structural, C. R. Acad. Sci. Paris Sér. A, 279 (1974), 745–747. MR0376678 (51 #12853).

    MathSciNet  MATH  Google Scholar 

  10. A. J. de Jong and J. Starr, Cubic fourfolds and spaces of rational curves, Ill. J. Math., 48 (2004), 415–450. MR2085418 (2006e:14007).

    MATH  Google Scholar 

  11. H. Esnault and E. Viehweg, Revêtements cycliques, in Algebraic threefolds (Varenna, 1981), Lecture Notes in Mathematics, vol. 947, pp. 241–250. Springer, Berlin, 1982. MR0672621 (84m:14015).

    Chapter  Google Scholar 

  12. H. Esnault and E. Viehweg, Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Compos. Math., 76 (1990), 69–85. Algebraic geometry (Berlin, 1988). MR1078858 (91m:14038).

    MathSciNet  MATH  Google Scholar 

  13. H. Esnault and E. Viehweg, Lectures on Vanishing Theorems, DMV Seminar, vol. 20, Birkhäuser, Basel, 1992. MR1193913 (94a:14017).

    Book  MATH  Google Scholar 

  14. B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitsure, and A. Vistoli, Fundamental Algebraic Geometry, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, 2005. Grothendieck’s FGA explained. MR2222646 (2007f:14001).

    MATH  Google Scholar 

  15. H. Flenner, Extendability of differential forms on nonisolated singularities, Invent. Math., 94 (1988), 317–326. MR958835 (89j:14001).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Fogarty, Invariant Theory, W. A. Benjamin, Inc., New York, 1969. MR0240104 (39 #1458).

    MATH  Google Scholar 

  17. R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1973. Troisième édition revue et corrigée, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII, Actualités Scientifiques et Industrielles, No. 1252. MR0345092 (49 #9831).

    MATH  Google Scholar 

  18. H. Grauert, Über die Deformation isolierter Singularitäten analytischer Mengen, Invent. Math., 15 (1972), 171–198. MR0293127 (45 #2206).

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Grauert and O. Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math., 11 (1970), 263–292. MR0302938 (46 #2081).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Greb, S. Kebekus, and S. J. Kovács, Extension theorems for differential forms, and Bogomolov-Sommese vanishing on log canonical varieties, Compos. Math., 146 (2010), 193–219. doi:10.1112/S0010437X09004321.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Greb, S. Kebekus, S. J. Kovács, and T. Peternell, Differential forms on log canonical varieties, Extended version of the present paper, including more detailed proofs and color figures. arXiv:1003.2913, March 2010.

  22. G.-M. Greuel, C. Lossen, and E. Shustin, Introduction to Singularities and Deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR2290112 (2008b:32013).

    MATH  Google Scholar 

  23. G.-M. Greuel, Dualität in der lokalen Kohomologie isolierter Singularitäten, Math. Ann., 250 (1980), 157–173. MR582515 (82e:32009)

    MathSciNet  MATH  Google Scholar 

  24. A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math., 4 (1960), 228. MR0217083 (36 #177a).

    Article  Google Scholar 

  25. A. Grothendieck, Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, vol. 224. Springer, Berlin, 1971, Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud, MR0354651 (50 #7129).

    MATH  Google Scholar 

  26. F. Guillén, V. Navarro Aznar, P. Pascual Gainza, and F. Puerta, Hyperrésolutions cubiques et descente cohomologique, Lecture Notes in Mathematics, vol. 1335, Springer, Berlin, 1988, Papers from the Seminar on Hodge-Deligne Theory held in Barcelona, 1982. MR972983 (90a:14024).

    MATH  Google Scholar 

  27. C. D. Hacon and S. J. Kovács, Classification of Higher Dimensional Algebraic Varieties, Oberwolfach Seminars, Birkhäuser, Boston, 2010.

    Book  MATH  Google Scholar 

  28. C. D. Hacon and J. McKernan, On Shokurov’s rational connectedness conjecture, Duke Math. J., 138 (2007), 119–136. MR2309156 (2008f:14030).

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer, New York, 1977. MR0463157 (57 #3116).

    MATH  Google Scholar 

  30. H. Hauser and G. Müller, The trivial locus of an analytic map germ, Ann. Inst. Fourier (Grenoble), 39 (1989), 831–844. MR1036334 (91m:32035).

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Heinzner, Geometric invariant theory on Stein spaces, Math. Ann., 289 (1991), 631–662. MR1103041 (92j:32116).

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Hironaka, On resolution of singularities (characteristic zero), in Proc. Int. Cong. Math., 1962, pp. 507–521.

    Google Scholar 

  33. M. Hochster, The Zariski-Lipman conjecture for homogeneous complete intersections, Proc. Am. Math. Soc., 49 (1975), 261–262. MR0360585 (50 #13033).

    MathSciNet  MATH  Google Scholar 

  34. H. Holmann, Quotienten komplexer Räume, Math. Ann., 142 (1960/1961), 407–440. MR0120665 (22 #11414).

    Article  MathSciNet  Google Scholar 

  35. D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, Aspects of Mathematics, vol. E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR1450870 (98g:14012).

    MATH  Google Scholar 

  36. K. Jabbusch and S. Kebekus, Families over special base manifolds and a conjecture of Campana, Math. Z., to appear. doi:10.1007/s00209-010-0758-6, arXiv:0905.1746, May 2009.

  37. K. Jabbusch and S. Kebekus, Positive sheaves of differentials on coarse moduli spaces, Ann. Inst. Fourier (Grenoble), to appear. arXiv:0904.2445, April 2009.

  38. Y. Kawamata, Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. Math., 127 (1988), 93–163. MR924674 (89d:14023).

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Kebekus and S. J. Kovács, The structure of surfaces mapping to the moduli stack of canonically polarized varieties, preprint (July 2007). arXiv:0707.2054.

  40. S. Kebekus and S. J. Kovács, Families of canonically polarized varieties over surfaces, Invent. Math., 172 (2008), 657–682. doi:10.1007/s00222-008-0128-8. MR2393082

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Kebekus and S. J. Kovács, The structure of surfaces and threefolds mapping to the moduli stack of canonically polarized varieties, Duke Math. J., 155 (2010), 1–33. MR2730371. arXiv:0812.2305

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Kollár, Algebraic groups acting on schemes, Undated, unfinished manuscript. Available on the author’s website at www.math.princeton.edu/~kollar.

  43. J. Kollár, Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics, vol. 32, Springer, Berlin, 1996. MR1440180 (98c:14001).

    Google Scholar 

  44. J. Kollár, Lectures on Resolution of Singularities, Annals of Mathematics Studies, vol. 166, Princeton University Press, Princeton, 2007. MR2289519.

    MATH  Google Scholar 

  45. J. Kollár and S. J. Kovács, Log canonical singularities are Du Bois, J. Am. Math. Soc., 23 (2010), 791–813. doi:10.1090/S0894-0347-10-00663-6.

    Article  MATH  Google Scholar 

  46. J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. 2000b:14018.

    Book  MATH  Google Scholar 

  47. J. Kollár et al., Flips and Abundance for Algebraic Threefolds, Astérisque, No. 211, Société Mathématique de France, Paris, 1992, Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991 (1992). MR1225842 (94f:14013).

    MATH  Google Scholar 

  48. S. J. Kovács and K. Schwede, Hodge theory meets the minimal model program: a survey of log canonical and Du Bois singularities, in Topology of Stratified, pp. 51–94, 2001.

    Google Scholar 

  49. H. B. Laufer, Taut two-dimensional singularities, Math. Ann., 205 (1973), 131–164. MR0333238 (48 #11563).

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Lipman, Free derivation modules on algebraic varieties, Am. J. Math., 87 (1965), 874–898. MR0186672 (32 #4130).

    Article  MathSciNet  MATH  Google Scholar 

  51. S. Lojasiewicz, Triangulation of semi-analytic sets, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 18 (1964), 449–474. MR0173265 (30 #3478).

    MathSciNet  MATH  Google Scholar 

  52. S. Mac Lane, Homology, Classics in Mathematics, Springer, Berlin, 1995, Reprint of the 1975 edition. MR1344215 (96d:18001).

    MATH  Google Scholar 

  53. H. Maschke, Beweis des Satzes, dass diejenigen endlichen linearen Substitutionsgruppen, in welchen einige durchgehends verschwindende Coefficienten auftreten, intransitiv sind, Math. Ann., 52 (1899), 363–368. MR1511061.

    Article  MathSciNet  MATH  Google Scholar 

  54. Y. Namikawa, Extension of 2-forms and symplectic varieties, J. Reine Angew. Math., 539 (2001), 123–147. MR1863856 (2002i:32011).

    Article  MathSciNet  MATH  Google Scholar 

  55. C. Okonek, M. Schneider, and H. Spindler, Vector Bundles on Complex Projective Spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, 1980. MR561910 (81b:14001).

    Book  MATH  Google Scholar 

  56. C. A. M. Peters and J. H. M. Steenbrink, Mixed Hodge Structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 52, Springer, Berlin, 2008. MR2393625.

    MATH  Google Scholar 

  57. D. Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J., 34 (1967), 375–386. MR0210944 (35 #1829).

    Article  MathSciNet  MATH  Google Scholar 

  58. M. Reid, Canonical 3-folds, in A. Beauville (ed.) Algebraic Geometry (Angers, 1979), Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.

    Google Scholar 

  59. M. Reid, Young person’s guide to canonical singularities, in Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, pp. 345–414, Amer. Math. Soc, Providence, 1987. MR927963 (89b:14016).

    Google Scholar 

  60. G. Scheja and U. Storch, Differentielle Eigenschaften der Lokalisierungen analytischer Algebren, Math. Ann., 197 (1972), 137–170. MR0306172 (46 #5299).

    Article  MathSciNet  MATH  Google Scholar 

  61. A. Seidenberg, The hyperplane sections of normal varieties, Trans. Am. Math. Soc., 69 (1950), 357–386. MR0037548 (12,279a).

    MathSciNet  MATH  Google Scholar 

  62. I. R. Shafarevich, Basic Algebraic Geometry. 1, 2nd edn., Springer, Berlin, 1994. Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid. MR1328833 (95m:14001).

    Book  MATH  Google Scholar 

  63. J. Steenbrink and D. van Straten, Extendability of holomorphic differential forms near isolated hypersurface singularities, Abh. Math. Semin. Univ. Hamb., 55 (1985), 97–110. MR831521 (87j:32025).

    Article  MATH  Google Scholar 

  64. J. H. M. Steenbrink, Vanishing theorems on singular spaces, Astérisque, 130 (1985), 330–341, Differential systems and singularities (Luminy, 1983). MR804061 (87j:14026).

    MathSciNet  Google Scholar 

  65. E. Szabó, Divisorial log terminal singularities, J. Math. Sci. Univ. Tokyo, 1 (1994), 631–639. MR1322695 (96f:14019).

    MathSciNet  MATH  Google Scholar 

  66. B. Teissier, The hunting of invariants in the geometry of discriminants, in Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 565–678, Sijthoff and Noordhoff, Alphen aan den Rijn, 1977. MR0568901 (58 #27964).

    Google Scholar 

  67. J.-L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math., 36 (1976), 295–312. MR0481096 (58 #1242)

    Article  MathSciNet  MATH  Google Scholar 

  68. E. Viehweg, Compactifications of smooth families and of moduli spaces of polarized manifolds, Ann. Math., 172 (2010), 809–910. arXiv:math/0605093. MR2680483.

    Article  MathSciNet  MATH  Google Scholar 

  69. E. Viehweg and K. Zuo, Base spaces of non-isotrivial families of smooth minimal models, in Complex Geometry (Göttingen, 2000), pp. 279–328, Springer, Berlin, 2002. MR1922109 (2003h:14019).

    Chapter  Google Scholar 

  70. J. M. Wahl, A characterization of quasihomogeneous Gorenstein surface singularities, Compos. Math., 55 (1985), 269–288. MR799816 (87e:32013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Greb.

Additional information

In memory of Eckart Viehweg

Daniel Greb was supported in part by an MSRI postdoctoral fellowship during the 2009 special semester in Algebraic Geometry. Stefan Kebekus and Thomas Peternell were supported in part by the DFG-Forschergruppe “Classification of Algebraic Surfaces and Compact Complex Manifolds”. Sándor Kovács was supported in part by NSF Grants DMS-0554697 and DMS-0856185, and the Craig McKibben and Sarah Merner Endowed Professorship in Mathematics.

About this article

Cite this article

Greb, D., Kebekus, S., Kovács, S.J. et al. Differential forms on log canonical spaces. Publ.math.IHES 114, 87–169 (2011). https://doi.org/10.1007/s10240-011-0036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-011-0036-0

Keywords

Navigation