Skip to main content
Log in

Nonlinear grain–grain forces and the width of the solitary wave in granular chains: a numerical study

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Any impulse results in the formation of a solitary wave of time averaged width \(W\) in a granular chain. If the grain–grain interaction potential \(V\sim \delta ^n\), where \(\delta \) is the distance by which the grains approach each other, then it is well established that \(n\ge 2\). Here we present dynamical simulation based results which suggest that \(W-1\propto (n-2)^{-\alpha }\) where \(\alpha =0.3283\) or \(\approx \)1/3. While in qualitative agreement, the result is quantitatively different from the formula for \(W\) proposed earlier by Nesterenko.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hertz, H.: Über die behrührung fester elastischer körper. J für die reine U. angew. math. 92, 156–171 (1882)

    MATH  Google Scholar 

  2. Nesterenko, V.F.: The propagation of nonlinear pressure pulses in granular mediums. Prikl. Mekh. Tekh. Fiz. 5, 136–148 (1983)

    Google Scholar 

  3. Lazaridi, A.N., Nesterenko, V.F.: The detection of isolated waves of a new type in a one-dimensional granular medium. Prikl. Mekh. Tekh. Fiz. 3, 115–118 (1985)

    Google Scholar 

  4. Nesterenko, V.F.: Solitary waves in discrete media with anomalous compressibility and similar to “sonic vacuum”. J. de Physique IV, Colloq C8, suppl. au J. de Physique III, 4, C8-729–C8-734 (1994), see Eq. (12)

  5. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Book  Google Scholar 

  6. Sinkovits, R.S., Sen, S.: Nonlinear dynamics in granular columns. Phys. Rev. Lett. 74, 2686–2689 (1995)

    Article  ADS  Google Scholar 

  7. Sen, S., Sinkovits, R.S.: Sound propagation in impure granular columns. Phys. Rev. E 56, 6857–6865 (1996)

    Article  ADS  Google Scholar 

  8. Coste, C., Falcon, E., Fauve, S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56, 6104–6117 (1997)

    Article  ADS  Google Scholar 

  9. Coste, C., Gilles, B.: On the validity of the Hertz contact law for granular material acoustics. Eur. Phys. J. B 7, 155–168 (1999)

    Article  ADS  Google Scholar 

  10. Sen, S., Manciu, M., Wright, J.D.: Soliton-like pulses in perturbed and driven Hertzian chains and their possible applications in detecting buried impurities. Phys. Rev. E 57, 2386–2397 (1998)

    Article  ADS  Google Scholar 

  11. Manciu, M., Sen, S., Hurd, A.J.: The propagation and backscattering of soliton-like pulses in a chain of quartz beads and related problems: I. Propagation. Physica A 274, 588–606 (1999)

    Article  ADS  Google Scholar 

  12. Hascoët, E., Herrmann, H.J., Loreto, V.: Shock propagation in a granular chain. Phys. Rev. E 59, 3202–3206 (1999)

    Article  ADS  Google Scholar 

  13. Hascoët, E., Herrmann, H.J.: Shocks in non-loaded bead chains with impurities. Eur. Phys. J. B 14, 183–190 (2000)

    Google Scholar 

  14. Sen, S., Manciu, M.: Solitary wave dynamics in generalized Hertz chains: an improved solution of the equation of motion. Phys. Rev. E 64, 056605 (2001)

    Article  ADS  Google Scholar 

  15. Wu, D.T.: Conservation principles in soliton impulse propagation through granular chains. Physica A 315, 194–202 (2002)

    Article  ADS  MATH  Google Scholar 

  16. Rosas, A., Lindenberg, K.: Pulse propagation in chains with nonlinear interactions. Phys. Rev. E 69, 016615 (2004)

    Article  ADS  Google Scholar 

  17. Rosas, A., Lindenberg, K.: Pulse velocity in a granular chain. Phys. Rev. E 69, 037601 (2004)

    Article  ADS  Google Scholar 

  18. Melo, F., Job, S., Santibanez, F., Tapia, F.: Experimental evidence of shock mitigation in a Hertzian tapered granular chain. Phys. Rev. E 73, 041305 (2006)

    Article  ADS  Google Scholar 

  19. Job, S., Melo, F., Sokolow, A., Sen, S.: How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys. Rev. Lett. 94, 178002 (2005)

    Article  ADS  Google Scholar 

  20. Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.L.: Solitary waves in the granular chain. Phys. Rep. 462, 21–66 (2008)

    Google Scholar 

  21. Lindenberg, K., Harbola, U., Romero, A.H., Rosas, A.: Pulse propagation in granular chains. AIP Conf. Proc. 1339, 97–110 (2011)

  22. Herbold, E., Nesterenko, V.F.: Solitary and shock waves in discrete strongly nonlinear double power-law materials. Appl. Phys. Lett. 90, 261902 (2007)

    Google Scholar 

  23. Pinto, I.L.D., Rosas, A., Romero, A.H., Lindenberg, K.: Pulse propagation in a chain of o-rings with and without compression. Phys. Rev. E 82, 031308 (2010)

    Article  ADS  Google Scholar 

  24. Spadoni, A., Daraio, C., Hurst, W., Brown, M.: Nonlinear phononic crystals based on chains of disks of alternating toroidal structures. Appl. Phys. Lett. 98, 161901 (2011)

    Article  Google Scholar 

  25. Sun, D., Daraio, C., Sen, S.: Nonlinear repulsive force law between two solids with axial symmetry. Phys. Rev. E 83, 066605 (2011)

    Article  ADS  Google Scholar 

  26. Sen, S., Manciu, M.: Discrete Hertzian systems and solitons. Physica A 268, 644–649 (1998)

    Article  Google Scholar 

  27. Ji, J.Y., Hong, J.: Existence criteria of solitary waves in a chain of grains. Phys. Lett. A 260, 60–61 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Goldsmith, W.: Impact—The Theory and Physical Behaviour of Colliding Solids. Edwards Arnold, London (1960)

    MATH  Google Scholar 

  29. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon, Oxford (1987)

    MATH  Google Scholar 

  30. Sun, D.: The contact force in generalized Hertz type systems and solitary waves. Ph.D. thesis, SUNY Buffalo, Buffalo, New York (2009)

  31. Bittle, E.G., Sokolow, A., Sen, S.: Formation of solitary wave trains in granular alignments. Europhys. Lett. 77, 24002-1-4 (2007)

    Google Scholar 

  32. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison-Wesley, Reading (2000)

Download references

Acknowledgments

This work has been partially supported by the US Army Research Office through a STIR Grant. We thank Yoichi Takato for his role in redoing the figures. Sourish Chakravarty’s help with the figures is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Sen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, D., Sen, S. Nonlinear grain–grain forces and the width of the solitary wave in granular chains: a numerical study. Granular Matter 15, 157–161 (2013). https://doi.org/10.1007/s10035-013-0400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0400-5

Keywords

Navigation