Skip to main content
Log in

Damage propagation in 2d beam lattices: 2. Design of an isotropic fault-tolerant lattice

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The paper demonstrates a rational design of an isotropic heterogeneous beam lattice that is fault-tolerant and energy-absorbing. Combining triangular and hexagonal structures, we calculate elastic moduli of obtained hybrid heterogeneous structures; simulate the development of flaws in that composite lattice subjected to a uniform uniaxial deformation; investigate its damage evolution; measure various characteristics of damage that estimate fault tolerance; discuss the trade-off between stiffness and fault tolerance. A design is found that develops a cloud of small evenly spread flaws instead of a crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ajdari, A., Jahromi, B.H., Papadopoulos, J., Nayeb-Hashemi, H., Vaziri, A.: Hierarchical honeycombs with tailorable properties. Int. J. Solids Struct. 49(11–12), 1413–1419 (2012)

    Article  Google Scholar 

  2. Berger, J.B., Wadley, H.N., McMeeking, R.M.: Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 543(7646), 533–537 (2017)

    Article  Google Scholar 

  3. Bujny, M., Aulig, N., Olhofer, M., Duddeck, F.: Identification of optimal topologies for crashworthiness with the evolutionary level set method. Int. J. Crashworthiness (2017). https://doi.org/10.1080/13588265.2017.1331493

    Google Scholar 

  4. Cherkaev, E., Cherkaev, A.: Principal compliance and robust optimal design. J. Elast. 72, 71–98 (2003). (also in: The Rational Spirit in Modern Continuum Mechanics, Essays and Papers Dedicated to the Memory of Clifford Ambrose Truesdell III, 2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cherkaev, E., Cherkaev, A.: Minimax optimization problem of structural design. Comput. Struct. 86, 1426–1435 (2008)

    Article  MATH  Google Scholar 

  6. Cherkaev, A., Cherkaev, E., Leelavanichkul, S.: Principle of optimization of structures against an impact. J. Phys. Confer. Ser. 319(1), 1–16 (2011)

    MATH  Google Scholar 

  7. Cherkaev, A., Leelavanichkul, S.: An impact protective structure with bistable links. Int. J. Damage Mech. 21(5), 697–711 (2012)

    Article  Google Scholar 

  8. Cherkaev, A., Cherkaev, E., Slepyan, L.: Transition waves in bistable structures. I: delocalization of damage. J. Mech. Phys. Solids 53(2), 383–405 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cherkaev, E., Cherkaev, A., Slepyan, L.: Dynamics of structures with bistable links. In: Vibration Problems ICOVP 2005, vol. 111, pp. 111–122. Springer (2007)

  10. Cherkaev, A., Ryvkin, M.: Damage propagation in 2d beam lattices: 1. Uncertainty and assumptions. Arch. Mech. (2017). (in print)

  11. Cherkaev, A., Slepyan, L.: Waiting element structures and stability under extension. Int. J. Damage Mech. 4(1), 58–82 (1995)

    Article  Google Scholar 

  12. Cherkaev, A., Vladimir Vinogradov, V., Leelavanishkul, S.: The waves of damage in elastic–plastic lattices with waiting links: design and simulation. Mech. Mater. 38, 748–756 (2005)

    Article  Google Scholar 

  13. Cherkaev, A.A., Zhornitskaya, L.: Protective structures with waiting links and their damage evolution. Multibody Syst. Dyn. J. 13(1), 53–67 (2005)

    Article  MATH  Google Scholar 

  14. Diaz, A.R., Bendsoe, M.P.: Shape optimization of multipurpose structures by homogenization method. Struct. Optim. 4, 17–22 (1992)

    Article  Google Scholar 

  15. Diaz, A.R., Soto C.A.: Lattice models for crash resistant design and optimization. In: Proceedings of 3rd World Congress of Structural and Multidisciplinary Optimization, Buffalo, New York, USA, 17–21 May 1999

  16. Fleck, N.A., Qiu, X.: The damage tolerance of elastic–brittle, two-dimensional isotropic lattices. J. Mech. Phys. Solids 55(3), 562–588 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fuchs, M.B.: Structures and Their Analysis. Springer, Basel (2016)

    Book  Google Scholar 

  18. Fuchs, M.B., Farhi, E.: Shape of stiffest controlled structures under unknown loads. Comput. Struct. 79(18), 1661–1670 (2001)

    Article  Google Scholar 

  19. Grenestedt, J.: Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids. J. Mech. Phys. Solids 46(1), 29–50 (1998)

    Article  MATH  Google Scholar 

  20. Holnicki-Szulc, J., Knap, L.: Optimal design of adaptive structures for the best crashworthiness. In: Proceedings of 3rd World Congress of Structural and Multidisciplinary Optimization, Buffalo, New York, USA, pp. 17–21 (1999)

  21. Holnicki, J., Knap, L.: Adaptive crashworthiness concept. Int. J. Impact Eng. 30(6), 639–663 (2004)

    Article  Google Scholar 

  22. Kucherov, L., Ryvkin, M.: Flaw nucleation in a brittle open-cell Kelvin foam. Int. J. Fract. 175(1), 79–86 (2012)

    Article  Google Scholar 

  23. Leelavanichkul, S., Cherkaev, A., Adams, D., Solzbacher, F.: Energy absorption of a helicoidal bistable structure. J. Mech. Mater. Struct. 5(2), 305–321 (2009)

    Article  Google Scholar 

  24. Lipperman, F., Ryvkin, M., Fuchs, M.B.: Fracture toughness of two-dimensional cellular material with periodic microstructure. Int. J. Fract. 146, 279–290 (2007)

    Article  MATH  Google Scholar 

  25. Lipperman, F., Ryvkin, M., Fuchs, M.B.: Nucleation of cracks in two-dimensional periodic cellular materials. Comput. Mech. 39(2), 127–139 (2007)

    Article  MATH  Google Scholar 

  26. Lipperman, F., Ryvkin, M., Fuchs, M.B.: Design of crack-resistant two-dimensional periodic cellular materials. J. Mech. Mater. Struct. 4(3), 441–457 (2009)

    Article  Google Scholar 

  27. Lurie, K.A.: Applied Optimal Control Theory of Distributed Systems, vol. 43. Springer, Berlin (2013)

    MATH  Google Scholar 

  28. Pedersen, C.B.W.: Topology optimization of 2D-frame structures with path-dependent response. Int. J. Numer. Methods Eng. 57(10), 1471–1501 (2002)

    Article  MATH  Google Scholar 

  29. Quintana-Alonso, I., Fleck, N.A.: Fracture of brittle lattice materials: a review. In: Daniel, I.M., Gdoutos, E.E., Rajapakse, Y.D.S. (eds.) Major Accomplishments in Composite Materials and Sandwich Structures. Springer, Dordrecht (2009)

    Google Scholar 

  30. Salehian, A., Ibrahim, M., Seigler, T.M.: Damping in periodic structures: a continuum modeling approach. AIAA J. 52(3), 569–590 (2014)

    Article  Google Scholar 

  31. Slepyan, L., Cherkaev, A., Cherkaev, E.: Transition waves in bistable structures II: analytical solution, wave speed, and energy dissipation. J. Mech. Phys. Solids 53(2), 407–436 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Soto, C.A.: Structural topology optimization for crashworthiness. Int. J. Crashworthiness 9(3), 277–283 (2004)

    Article  Google Scholar 

  33. Zargarian, A., Esfahanian, M., Kadkhodapour, J., Ziaei-Rad, S.: Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures. Mater. Sci. Eng. C 60, 339–347 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support by the NDM, National Science Foundation, Award Number 1515125, and by Israel Science Foundation, Grant No. 1494/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Cherkaev.

Additional information

This is the second part of a two-part paper that deals with the structural optimization of fault-tolerant lattices. We dedicate it to Konstantin Lurie, whose groundbreaking work in structural optimization inspires our continued investigations.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Calculation of effective properties of a hybrid lattice

Appendix. Calculation of effective properties of a hybrid lattice

Here, we compute effective Young modulus and Poisson ratio of the hybrid structures. Assuming that a constant horizontal strain is applied to the lattice (\(\bar{\varepsilon }_x= \varepsilon _0, ~ \bar{\varepsilon }_y=0\)), we calculate the horizontal stress component \(\bar{\sigma }_x\). The horizontal component of internal force in beam ij is denoted as \(F_{ij}\) (see Fig. 4). Positive sign of the force corresponds to tensile deformation. Due to the structural symmetry, it is enough to consider deformation of four beams: bending and extension of the inclined H- and R-beams and extension of horizontal H- and R-beams presented in Fig. 4.

The equilibrium of x-components of the forces in node 2 (Fig. 4) requires that

$$\begin{aligned} \frac{1}{2} F_{23}+F_{24}-F_{12}- \frac{1}{2} F_{25}=0 \end{aligned}$$
(16)

where \(F_{ij}\) is the tensile force in the beam that connects nodes i and j.

Two additional equations express compatibility conditions

$$\begin{aligned} u_{12}+u_{23}=u_{14}, \quad u_{23}=u_{24}. \end{aligned}$$
(17)

Here \(u_{ij}\) denote the difference in the x-displacements of the ends of beam that joins nodes i and j. For the horizontal beams these values are expressed through Hooke’s law

$$\begin{aligned} u_{14}=\frac{F_{14}l}{EA_\mathrm{r}}, \quad u_{23}=\frac{F_{23}l}{2EA_\mathrm{h}} \end{aligned}$$
(18)

where \(A_\mathrm{r}\) and \(A_\mathrm{h}\) are cross-sectional areas of h-beams and r-beams, respectively.

Deformation of the oblique beams consists of elongation along the beam and antisymmetric bending. Calculation by routine structural mechanics methods, see details in [17], gives:

$$\begin{aligned} u_{12}=\frac{4F_{12}l}{EA_\mathrm{h}\left( 1+3\bar{t}_\mathrm{h}^2\right) },\quad u_{24}=\frac{4F_{24}l}{EA_\mathrm{r}\left( 1+3\bar{t}_\mathrm{r}^2\right) }. \end{aligned}$$
(19)

Here \(t_\mathrm{h}, t_\mathrm{r}\) are relative thicknesses of h-beams and r-beams, respectively. Equations (18) and (19) allow for exclusion of \(u_{14}, \,u_{23}, \, u_{12}, \, u_{24}\) from (17), and Eqs. (16) and (17) allow to express \(F_{25}, F_{12}\) and \(F_{23}\) through \(F_{24}\).

The average over the cell stress in horizontal direction is the sum of these forces over the size of the cell’s period.

$$\begin{aligned} \bar{\sigma }_x= \frac{F_{23}+2 F_{24}+F_{14}}{\sqrt{3}l}, \end{aligned}$$
(20)

and the average deformation is the sum of elongations in two horizontal r-beams and one h-beam over the size of the period.

$$\begin{aligned} \bar{\varepsilon }_x= \varepsilon _0= \frac{2u_{14} + 2 u_{23}}{3 l} =\frac{1}{3l} \left( 2l\frac{F_{14}}{EA_\mathrm{r}}+l\frac{F_{23}}{EA_\mathrm{h}}\right) \end{aligned}$$
(21)

Using Mathematica, we obtain after some manipulations

$$\begin{aligned}&\frac{\bar{\sigma }_x}{\varepsilon _0} =\frac{ E_\mathrm{p}\left[ 4 t_\mathrm{r}^2 P_1\left( t_\mathrm{r}\right) +t_\mathrm{r} t_\mathrm{h}\left( 19+9t_\mathrm{h}^2\right) +t_\mathrm{h} P_1\left( t_\mathrm{h}\right) \left( 3 t_\mathrm{r}^3+4{t_\mathrm{h}}^2\right) \right] }{4 \sqrt{3} \left( t_\mathrm{r}+t_\mathrm{r}^3+2t_\mathrm{h}+2t_\mathrm{h}^3\right) } \nonumber \\&\text{ with }\quad P_1\left( t\right) =1+3t^2. \end{aligned}$$
(22)

Equations (9), (10), (22) yield to the sought expressions for the effective elastic Young modulus and Poisson ratio of the hybrid lattice

$$\begin{aligned}&{\nu _*}=\frac{4t_\mathrm{r}^2\left( 1-t_\mathrm{r}^2\right) + 4t_\mathrm{h}^2\left( 1-t_\mathrm{h}^2\right) +t_\mathrm{r}^3t_\mathrm{h}\left( 1-9t_\mathrm{h}^2\right) +t_\mathrm{r}t_\mathrm{h} \left( 1+7t_\mathrm{h}^2\right) }{ P_2\left( t_\mathrm{r},t_\mathrm{h}\right) }, \end{aligned}$$
(23)
$$\begin{aligned}&\frac{{E_*}}{E_\mathrm{p}}=\frac{2\left( 2t_\mathrm{r}+t_\mathrm{h}\right) \left( 8t_\mathrm{r}^4+9t_\mathrm{r}t_\mathrm{h}+t_\mathrm{r}^3t_\mathrm{h}+t_\mathrm{r}t_\mathrm{h}^3+9t_\mathrm{r}^3t_\mathrm{h}^3+8t_\mathrm{h}^4\right) }{\sqrt{3} P_2\left( t_\mathrm{r},t_\mathrm{h}\right) } \end{aligned}$$
(24)

where

$$\begin{aligned} P_2\left( t_\mathrm{r},t_\mathrm{h}\right) = 4t_\mathrm{r}^2 P_1\left( t_\mathrm{r}\right) +t_\mathrm{r}t_\mathrm{h}\left( 19+9t_\mathrm{h}^2\right) +\left( 3 t_\mathrm{r}^3+4{t_\mathrm{h}}^2\right) P_1\left( t_\mathrm{h}\right) . \end{aligned}$$

which agrees with formulas (11), (12). There, the moduli \({E_*}\) and \({\nu _*}\) are expressed through density \(\rho \) and ratio \(\alpha \) and parameters \(t_\mathrm{r}\) and \(t_\mathrm{h}\) are defined as

$$\begin{aligned} t_\mathrm{r}=\frac{\sqrt{3}}{4}\alpha \rho , \quad t_\mathrm{h}=\frac{\sqrt{3}}{2}(1-\alpha )\rho . \end{aligned}$$
(25)

Notice that for the cases \(t_\mathrm{r}=t_\mathrm{h}=t\) and \(t_\mathrm{r}=0\), the above expressions yield the known formulas for triangular and hexagonal lattices, respectively, see [24].

Interestingly, the expression for Poisson ratio of the rhombic lattice (Fig. 2, center) is the same as for the hexagonal one, as it is evident from setting \(t_\mathrm{h}=0\) or \(t_\mathrm{r}=0\) in (23). However, the thickness of the beams in the rhombille lattice is twice smaller than in hexagonal lattices for the fixed relative density because rhombille lattice has twice more beams per unit volume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkaev, A., Ryvkin, M. Damage propagation in 2d beam lattices: 2. Design of an isotropic fault-tolerant lattice. Arch Appl Mech 89, 503–519 (2019). https://doi.org/10.1007/s00419-018-1428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1428-0

Keywords

Navigation