Skip to main content

Advertisement

Log in

Error analysis of upper tropospheric water vapor in CMIP5 models using “A-Train” satellite observations and reanalysis data

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Upper tropospheric water vapor (UTWV) plays a critical role in amplifying global warming caused by increasing greenhouse gases, yet it is one of the most poorly simulated quantities in climate models. It is not clear what physical processes play a central role in controlling the model errors in UTWV. We diagnose the UTWV simulation errors from AMIP models submitted to the CMIP5 project by using “A-Train” satellite observation and reanalysis data. We identify the relative contributions of errors in relative humidity (RH), temperature, and large-scale circulation (represented by vertical pressure velocity at 500 hPa, ω500) to the modeled UTWV errors over the tropics (30°N–30°S). It is found that models generally have positive biases in UTWV, except over the continental convective regions where negative biases predominate. The errors in the patterns and amplitudes of climatological UTWV are highly correlated with those in RH and ω500. The fractional UTWV errors show large positive errors over the large-scale descending regimes (0 < ω500 < 40 hPa/day) where large model spreads also exist. The seasonal cycle of hemispherically averaged UTWV closely resembles that of ω500. The errors for UTWV interannual anomalies are abundant over the climatologically deep convective regions (SST > 300 K or ω500 < −30 hPa/day) and these errors are positive (negative) where anomalous descent (ascent) occurs during El Niño. We find that the water vapor errors are dominated by the errors in RH rather than in temperature throughout the troposphere, while temperature errors play an important role for water vapor errors near the tropopause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Chahine MT et al (2006) AIRS: improving weather forecasting and providing new data on greenhouse gases. Bull Am Meteorol Soc 87:911–926. doi:10.1175/BAMS-87-7-911

    Article  Google Scholar 

  • Chuang H, Huang X, Minschwaner K (2010) Interannual variations of tropical upper tropospheric humidity and tropical rainy-region SST: comparisons between models, reanalyses, and observations. J Geophys Res 115:D21125. doi:10.1029/2010JD014205

    Article  Google Scholar 

  • Collins WD et al (1996) Radiative effects of convection in the tropical Pacific. J Geophys Res 101:14999–15012

  • Del Genio AD, Kovari W Jr, Yao M-S (1994) Climatic implications of the seasonal variation of upper troposphere water vapor. Geophys Res Lett 21:2701–2704. doi:10.1029/94GL02658

    Article  Google Scholar 

  • Gates WL, Mitchell JFB, Boer GJ, Cubasch U, Meleshko VP (1992) Climate modelling, climate prediction and model validation. In: Houghton JT, Callander BA, Varney SK (eds) Climate change 1992, the supplementary report to the IPCC scientific assessment. Cambridge University Press, Cambridge, pp 97–134

    Google Scholar 

  • Guan B, Waliser DE, Li JF, da Silva A (2013) Evaluating the impact of orbital sampling on satellite–climate model comparisons. J Geophys Res Atmos 118:355–369. doi:10.1029/2012JD018590

    Article  Google Scholar 

  • Hallberg R, Inamdar AK (1993) Observation of seasonal variations of atmospheric greenhouse trapping and its enhancement at high sea surface temperature. J Clim 6:920–931

    Article  Google Scholar 

  • Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity, AGU geophysical monograph 29, Maurice Ewing, vol 5. American Geophysical Union, pp 130–163

  • Hearty T, Savtchenko A, Tian B, Fetzer EJ, Yung YL, Theobald M, Vollmer B, Fishbein E, Won Y-I (2014) Estimating sampling biases and measurement uncertainties of AIRS/AMSU-A temperature and water vapor observations using MERRA reanalysis. J Geophys Res 119:2725–2741. doi:10.1002/2013JD021205

    Google Scholar 

  • Held IM, Soden BJ (2000) Water vapor feedback and global warming. Annu Rev Energy Environ 25:441–475

    Article  Google Scholar 

  • Inamdar AK, Ramanathan V (1994) Physics of greenhouse effect and convection in warm oceans. J Climate 5:715–731

    Article  Google Scholar 

  • Jiang JH et al (2010) Five-year (2004–2009) observations of upper tropospheric water vapor and cloud ice from MLS and comparisons with GEOS-5 analyses. J Geophys Res 115:D15103. doi:10.1029/2009JD013256

    Article  Google Scholar 

  • Jiang JH, Su H, Zhai C et al (2012) Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J Geosphys Res 118. doi:10.1029/2011JD017237

  • L’Ecuyer TS, Jiang JH (2010) Touring the atmosphere aboard the A-Train. Phys Today 63(7):36–41. doi:10.1063/1.3463626

    Article  Google Scholar 

  • Livesey NJ, Snyder WV, Read WG, Wagner PA (2006) Retrieval algorithms for the EOS Microwave Limb Sounder (MLS) instrument. IEEE Trans Geosci Remote Sens 44(5):1144–1155

    Article  Google Scholar 

  • Livesey NJ et al (2011) Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) version 3.3 level 2 data quality and description document, JPL D-33509, Jet Propul. Lab., Pasadena, Calif. http://mls.jpl.nasa.gov/data/datadocs.php

  • Luo Z, Kley D, Johnson RH, Smit Herman (2008) Ten years of measurements of tropical upper-tropospheric water vapor by MOZA IC, part II: assessing the ECMWF humidity analysis. J Clim 21:1449–1466

    Article  Google Scholar 

  • Luo ZJ, Kley D, Johnson RH, Liu GY, Nawrath S, Smit HGJ (2012) Influence of sea surface temperature on humidity and temperature in the outflow of tropical deep convection. J Clim 25:1340–1348

    Article  Google Scholar 

  • Minschwaner K, Dessler AE (2004) Water vapor feedback in the tropical upper troposphere: model results and observations. J Clim 17:1272–1282

    Article  Google Scholar 

  • Olsen et al (2013) AIRS/AMSU/HSB version 6, data release user guide. http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v6_docs/v6releasedocs-1/V6_Data_Release_User_Guide.pdf

  • Polanski S, Rinke A, Dethloff K (2010) Validation of the HIRHAM-simulated Indian summer monsoon circulation, advances in meteorology. doi:10.1155/2010/415632

  • Ramanathan V, Collins W (1991) Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature 351:27–32

    Article  Google Scholar 

  • Raval A, Ramanathan V (1989) Observational determination of the greenhouse effect. Nature 342:758–761

    Article  Google Scholar 

  • Read WG, Lambert A, Bacmeister J, Cofield RE, Christensen LE, Cuddy DT, Daffer WH, Drouin BJ, Fetzer E, Froidevaux L, Fuller R, Herman R, Jarnot RF, Jiang JH, Jiang YB, Kelly K, Knosp BW, Pumphrey HC, Rosenlof KH, Sabounchi X, Santee ML, Schwartz MJ, Snyder WV, Stek PC, Su H, Takacs LL, Thurstans RP, Vomel H, Wagner PA, Waters JW, Webster CR, Weinstock EM, Wu DL (2007) Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation. J Geophys Res 112:D24S35. doi:10.1029/2007JD008752

  • Riehl H, Malkus JS (1958) On the heat balance in the equatorial trough zone. Geophysica 6:503–538

    Google Scholar 

  • Simon T, Hense A, Su B, Jiang T, Simmer C et al (2013) Pattern-based statistical downscaling of East Asian Summer Monsoon precipitation. Tellus A 65. doi:10.3402/tellusa.v65i0.19749

  • Soden BJ, Fu R (1995) A satellite analysis of deep convection, upper-tropospheric humidity, and the greenhouse effect. J Clim 8:2333–2351

    Article  Google Scholar 

  • Soden BJ, Jackson DL, Ramaswamy V, Schwarzkopf MD, Huang X (2005) The radiative signature of upper tropospheric moistening. Science 310. doi:10.1126/science.1115602

  • Soden BJ, Held IM, Colman R, Shell KM, Kiehl JT, Shields CA (2008) Quantifying climate feedbacks using radiative kernels. J Clim 21:3504–3520

    Article  Google Scholar 

  • Su H, Read WG, Jiang JH, Waters JW, Wu DL, Fetzer EJ (2006) Enhanced positive water vapor feedback associated with tropical deep convection: new evidence from Aura MLS. Geophys Res Lett 33:L05709. doi:10.1029/2005GL025505

    Google Scholar 

  • Su H, Jiang JH, Zhai C, Perun V, Shen JT, Del Genio AD, Nazarenko LS, Donner LJ, Horowitz LW, Seman CJ, Morcrette CJ, Petch J, Ringer MA, Cole J, dos Santos Mesquita M, Iversen T, Kristjansson JE, Gettelman A, Rotstayn LD, Jeffrey SJ, Dufresne J-L, Watanabe M, Kawai H, Koshiro T, Wu T, Volodin EM, L’Ecuyer T, Teixeira J, Stephens GL (2013) Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using “A-Train” satellite observations and reanalysis data. J Geophys Res Atmos 118(7):2762–2780. doi:10.1029/2012JD018575

    Article  Google Scholar 

  • Sun D-Z, Lindzen RS (1993) Distribution of tropical tropospheric water vapor. J Atmos Sci 50:1643–1660

    Article  Google Scholar 

  • Takahashi H, Su H, Jiang JH, Luo ZJ, Xie S-P, Hafner J (2013) Tropical water vapor variations during the 2006–07 and 2009–10 El Ninõs: satellite observation and GCM simulation. J Geophys Res Atmos 118. doi:10.1002/jgrd.50684

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tett SFB, Mitchell JFB, Parker DE, Allen MR (1996) Human influence on the atmospheric vertical temperature structure: detection and observations. Science 247:1170–1173

    Article  Google Scholar 

  • Tian B, Fetzer EJ, Kahn BH, Teixeira J, Manning E, Hearty T (2013a) Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology. J Geophys Res Atmos 118:114–134. doi:10.1029/2012JD018607

    Article  Google Scholar 

  • Tian B, Manning E, Fetzer EJ, Olsen E, Sun W (2013b) AIRS/AMSU/HSB Version 6 Level 3 Product User Guide. http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v6_docs/v6releasedocs-1/V6_L3_User_Guide.pdf

  • Udelhofen PM, Hartmann DL (1995) Influence of tropical cloud systems on the relative humidity in the upper troposphere. J Geophys Res 100. doi:10.1029/94JD02826. ISSN: 0148-0227

  • Waliser DE, Graham NE, Gautier C (1993) Comparison of the highly reflective cloud and outgoing longwave radiation datesets for use in estimating tropical deep convection. J Clim 6:331–353

    Article  Google Scholar 

  • Waters JW et al (2006) The Earth observing system microwave limb sounder (EOSMLS) on the Aura satellite. IEEE Trans Geosci Remote Sens 44(5):1075–1092. doi:10.1109/TGRS.2006.873771

    Article  Google Scholar 

  • Wu DL, Jiang JH, Read WG, Austin RT, Davis CP, Lambert A, Stephens GL, Vane DG, Waters JW (2008) Validation of the aura MLS cloud ice water content (IWC) measurements. J Geophys Res 113. doi:10.1029/2007JD008931

Download references

Acknowledgments

The authors acknowledge the funding support from NASA ROSES10-NEWS, ROSES12-NDOA and ROSES13-AST programs. This work is performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanii Takahashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7005 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, H., Su, H. & Jiang, J.H. Error analysis of upper tropospheric water vapor in CMIP5 models using “A-Train” satellite observations and reanalysis data. Clim Dyn 46, 2787–2803 (2016). https://doi.org/10.1007/s00382-015-2732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2732-9

Keywords

Navigation