Skip to main content
Log in

A Geometric Theory of Growth Mechanics

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper we formulate a geometric theory of the mechanics of growing solids. Bulk growth is modeled by a material manifold with an evolving metric. The time dependence of the metric represents the evolution of the stress-free (natural) configuration of the body in response to changes in mass density and “shape”. We show that the time dependency of the material metric will affect the energy balance and the entropy production inequality; both the energy balance and the entropy production inequality have to be modified. We then obtain the governing equations covariantly by postulating invariance of energy balance under time-dependent spatial diffeomorphisms. We use the principle of maximum entropy production in deriving an evolution equation for the material metric. In the case of isotropic growth, we find those growth distributions that do not result in residual stresses. We then look at Lagrangian field theory of growing elastic solids. We will use the Lagrange–d’Alembert principle with Rayleigh’s dissipation functions to derive the governing equations. We make an explicit connection between our geometric theory and the conventional multiplicative decomposition of the deformation gradient, F=F e F g, into growth and elastic parts. We linearize the nonlinear theory and derive a linearized theory of growth mechanics. Finally, we obtain the stress-free growth distributions in the linearized theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrosi, D., Guana, F.: Stress-modulated growth. Math. Mech. Solids 12(3), 319–342 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Ambrosi, D., Mollica, F.: The role of stress in the growth of a multicell spheroid. J. Math. Biol. 48, 477–499 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Ben Amar, M., Goriely, A.: Growth and instability in elastic tissues. J. Mech. Phys. Solids 53, 2284–2319 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Berger, M.: A Panoramic View of Riemannian Geometry. Springer, New York (2003)

    MATH  Google Scholar 

  • Bilby, B.A., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. Lond. A 231(1185), 263–273 (1955)

    Article  MathSciNet  Google Scholar 

  • Bilby, B.A., Gardner, L.R.T., Stroh, A.N.: Continuous distribution of dislocations and the theory of plasticity. In: Proceedings of the Ninth International Congress of Applied Mechanics, Brussels, 1956, pp. 35–44. Université de Bruxelles, Brussels (1957)

    Google Scholar 

  • Boley, B.A., Weiner, J.H.: Theory of Thermal Stresses. Dover, New York (1997)

    Google Scholar 

  • Brethert, F.P.: A note on Hamilton’s principle for perfect fluids. J. Fluid Mech. 44, 19–31 (1970)

    Article  Google Scholar 

  • Chen, Y.C., Hoger, A.: Constitutive functions of elastic materials in finite growth and deformation. J. Elast. 59(1–3), 175–193 (2000)

    Article  MATH  Google Scholar 

  • Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  • Cowin, S.C., Hegedus, D.H.: Bone remodeling 1. Theory of adaptive elasticity. J. Elast. 6, 313–326 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  • DiCarlo, A., Quiligotti, S.: Growth and balance. Mech. Res. Commun. 29, 449–456 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Eckart, C.: The thermodynamics of irreversible processes. 4. The theory of elasticity and anelasticity. Phys. Rev. 73(4), 373–382 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  • Efrati, E., Sharon, E., Kupferman, R.: Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57(4), 762–775 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Eisenhart, L.P.: Riemannian Geometry. Princeton University Press, Princeton (1926)

    MATH  Google Scholar 

  • Eisenhart, L.P.: Non-Riemannian Geometry. Dover, New York (1927)

    Google Scholar 

  • Epstein, M., Elżanowski, M.: Material Inhomogeneities and their Evolution. Springer, New York (2007)

    MATH  Google Scholar 

  • Epstein, M., Maugin, G.A.: Thermomechanics of volumetric growth in uniform bodies. Int. J. Plast. 16, 951–978 (2000)

    Article  MATH  Google Scholar 

  • Fung, Y.C.: On the foundations of biomechanics. J. Appl. Mech. 50, 1003–1009 (1983)

    Article  Google Scholar 

  • Fusi, L., Farina, A., Ambrosi, D.: Mathematical modeling of a solid-liquid mixture with mass exchange between constituents. Math. Mech. Solids 11(6), 575–595 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Garikipati, K., Arruda, E.M., Grosh, K., Narayanan, H., Calve, S.: A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J. Mech. Phys. Solids 52(7), 1595–1625 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Goriely, A., Robertson-Tessi, M., Tabor, M., Vandiver, R.: Elastic growth models. In: Mondaini, R. (ed.) Mathematical Modelling of Biosystems. Springer, Berlin (2008)

    Google Scholar 

  • Green, A.E., Naghdi, P.M.: On thermodynamics and nature of second law. Proc. R. Soc. Lond. Ser. A 357, 253–270 (1977)

    Article  MathSciNet  Google Scholar 

  • Green, A.E., Naghdi, P.M.: A demonstration of consistency of an entropy balance with balance of energy. Z. Angew. Math. Phys. 42, 159–168 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Green, A.E., Rivlin, R.S.: On Cauchy’s equations of motion. Z. Angew. Math. Phys. 15, 290–293 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  • Hamilton, R.S.: 3-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    MATH  MathSciNet  Google Scholar 

  • Hoger, A.: Virtual configurations and constitutive equations for residually stressed bodies with material symmetry. J. Elast. 48, 125–144 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137(1), 1–81 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Hsu, F.H.: The influences of mechanical loads on the form of a growing elastic body. J. Biomech. 1, 303–313 (2003)

    Article  Google Scholar 

  • Humphrey, J.D.: Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. Ser. A 459, 3–46 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Klarbring, A., Olsson, T., Stalhand, J.: Theory of residual stresses with application to an arterial geometry. Arch. Mech. 59, 341–364 (2007)

    MATH  MathSciNet  Google Scholar 

  • Kondaurov, V.I., Nikitin, L.V.: Finite strains of viscoelastic muscle tissue. PMM J. Appl. Math. Mech. 51, 346–353 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Kondo, K.: Geometry of elastic deformation and incompatibility. In: Kondo, K. (ed.) Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, vol. 1, pp. 5–17. Division C, Gakujutsu Bunken Fukyo-Kai (1955a)

  • Kondo, K.: Non-Riemannien geometry of imperfect crystals from a macroscopic viewpoint. In: Kondo, K. (ed.) Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, vol. 1, pp. 6–17. Division D-I, Gakujutsu Bunken Fukyo-Kai (1955b)

  • Kondo, K.: Non-Riemannian and Finslerian approaches to the theory of yielding. Int. J. Eng. Sci. 1, 71–88 (1963)

    Article  Google Scholar 

  • Kondo, K.: On the analytical and physical foundations of the theory of dislocations and yielding by the differential geometry of continua. Int. J. Eng. Sci. 2, 219–251 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  • Kröner, E.: Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)

    Article  MATH  Google Scholar 

  • Lee, E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1967)

    Google Scholar 

  • Lee, J.M.: Riemannian Manifold. An Introduction to Curvature. Springer, New York (1997)

    Google Scholar 

  • Lee, E.H., Liu, D.T.: Finite-strain elastic-plastic theory with application to plane-wave analysis. J. Appl. Phys. 38, 19–27 (1967)

    Article  Google Scholar 

  • Loret, B., Simoes, F.M.F.: A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues. Eur. J. Mech. A-Solids 24(5), 757–781 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Lubarda, V.A., Hoger, A.: On the mechanics of solids with a growing mass. Int. J. Solids Struct. 39, 4627–4664 (2002)

    Article  MATH  Google Scholar 

  • Lubrada, V.A.: Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics. Appl. Mech. Rev. 57(2), 95–108 (2004)

    Article  Google Scholar 

  • Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover, New York (1983)

    MATH  Google Scholar 

  • Marsden, J.E., Ratiu, T.: Introduction to Mechanics and Symmetry. Springer, New York (2003)

    Google Scholar 

  • Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426(1), 1–45 (2006)

    Article  MathSciNet  Google Scholar 

  • Mazzucato, A.L., Rachele, L.V.: Partial uniqueness and obstruction to uniqueness in inverse problems for anisotropic elastic media. J. Elast. 83, 205–245 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Miehe, C.: A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric. Int. J. Solids Struct. 35, 3859–3897 (1998)

    Article  MATH  Google Scholar 

  • Naumov, V.E.: Mechanics of growing deformable solids—a review. J. Eng. Mech. 120, 207–220 (1994)

    Article  Google Scholar 

  • Nishikawa, S.: Variational Problems in Geometry. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  • Ozakin, A., Yavari, A.: A geometric theory of thermal stresses. J. Math. Phys. 51, 032902 (2010)

    Article  MathSciNet  Google Scholar 

  • Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (2002). http://arXiv.org/math.DG/0211159v1

  • Peterson, P.: Riemannian Geometry. Springer, New York (1997)

    Google Scholar 

  • Rajagopal, K.R., Srinivasa, A.R.: On thermomechanical restrictions of continua. Proc. R. Soc. A 460(2042), 631–651 (2004a)

    Article  MATH  MathSciNet  Google Scholar 

  • Rajagopal, K.R., Srinivasa, A.R.: On the thermomechanics of materials that have multiple natural configurations—Part I: Viscoelasticity and classical plasticity. Z. Angew. Math. Phys. 55(5), 861–893 (2004b)

    Article  MATH  MathSciNet  Google Scholar 

  • Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(2), 1890–1899 (1997)

    Article  MathSciNet  Google Scholar 

  • Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994)

    Article  Google Scholar 

  • Senan, N.A.F., O’Reilly, O.M., Tresierras, T.N.: Modeling the growth and branching of plants: a simple rod-based model. J. Mech. Phys. Solids 56, 3021–3036 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Simo, J.C., Marsden, J.E.: On the rotated stress tensor and the material version of the Doyle–Ericksen formula. Arch. Ration. Mech. Anal. 86, 213–231 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Skalak, R., Dasgupta, G., Moss, M., Otten, E., Dullemeijer, P., Vilmann, H.: Analytical description of growth. J. Theor. Biol. 94, 555–577 (1982)

    Article  MathSciNet  Google Scholar 

  • Skalak, R., Zargaryan, S., Jain, R.K., Netti, P.A., Hoger, A.: Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 34, 889–914 (1996)

    MATH  Google Scholar 

  • Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. III. Publish or Perish, Houston (1999)

    Google Scholar 

  • Stojanović, R.: On the stress relation in non-linear thermoelasticity. Int. J. Non-Linear Mech. 4, 217–233 (1969)

    Article  Google Scholar 

  • Stojanović, R., Djurić, S., Vujošević, L.: On finite thermal deformations. Arch. Mech. Stosow. 16, 103–108 (1964)

    Google Scholar 

  • Takamizawa, K.: Stress-free configuration of a thick-walled cylindrical model of the artery—an application of Riemann geometry to the biomechanics of soft tissues. J. Appl. Mech. 58, 840–842 (1991)

    Article  Google Scholar 

  • Takamizawa, K., Matsuda, T.: Kinematics for bodies undergoing residual stress and its applications to the left ventricle. J. Appl. Mech. 57, 321–329 (1990)

    Article  Google Scholar 

  • Topping, P.: Lectures on the Ricci Flow. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  • Vujošević, L., Lubarda, V.A.: Finite-strain thermoelasticity based on multiplicative decomposition of deformation gradient. Theor. Appl. Mech. 28–29, 379–399 (2002)

    Google Scholar 

  • Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  • Wanas, M.I.: Absolute parallelism geometry: developments, applications and problems (2008). arXiv:gr-qc/0209050v1

  • Yavari, A.: On geometric discretization of elasticity. J. Math. Phys. 49, 022901 (2008)

    Article  MathSciNet  Google Scholar 

  • Yavari, A., Marsden, J.E.: Covariant balance laws in continua with microstructure. Rep. Math. Phys. 63(1), 1–42 (2009a)

    Article  MATH  MathSciNet  Google Scholar 

  • Yavari, A., Marsden, J.E.: Energy balance invariance for interacting particle systems. Z. Angew. Math. Phys. 60(4), 723–738 (2009b)

    Article  MATH  MathSciNet  Google Scholar 

  • Yavari, A., Ozakin, A.: Covariance in linearized elasticity. Z. Angew. Math. Phys. 59(6), 1081–1110 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Yavari, A., Marsden, J.E., Ortiz, M.: On the spatial and material covariant balance laws in elasticity. J. Math. Phys. 47, 042903 (2006). 85–112

    Article  MathSciNet  Google Scholar 

  • Youssef, N.L., Sid-Ahmed, A.M.: Linear connections and curvature tensors in the geometry of parallelizable manifolds. Rep. Math. Phys. 60, 39–53 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Ziegler, H.: An Introduction to Thermomechanics. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Yavari.

Additional information

Communicated by A. Mielke.

Dedicated to the memory of Professor James K. Knowles (1931–2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavari, A. A Geometric Theory of Growth Mechanics. J Nonlinear Sci 20, 781–830 (2010). https://doi.org/10.1007/s00332-010-9073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-010-9073-y

Keywords

Mathematics Subject Classification (2000)

Navigation