Skip to main content

Advertisement

Log in

Microdamage Accumulation Changes According to Animal Mass: An Intraspecies Investigation

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The fatigue life of a structure is also influenced by its size. Statistically, a bone from a large animal is expected to bear a higher risk of stress fracture if compared to the same bone from a small animal of the same species. This is not documented in the dog, where individuals can have a 40 times difference in body mass. We investigated the effect of body size on cortical bone microdamage accumulation, cortical microstructural organization (porosity, osteon area, and osteocyte lacunar density), and turnover in dogs with a wide body mass range. The aim was to understand and mathematically model how the bone tissue copes with the microdamage accumulation linked to body mass increase. Calcified transverse cortical sections of 18 canine radii of remarkably different size were examined by means of a standard bulk-staining technique and histomorphometric standard algorithms. Relationships between the investigated histomorphometric variables age, sex and mass were analyzed by general linear multivariate models and exponential equations. Type and location of microdamage and bone turnover were not influenced by body mass. Gender did not influence any parameter. Age influenced bone turnover and activation frequency. Microcrack density was influenced by bone mass. Bones had a similar microstructural organization within the same species regardless of the subject’s dimension. Microdamage accumulation is inversely related to bone mass, whereas bone turnover is mass-invariant. We theorize a mass-related change in the bone fracture toughness targeted to reach an optimal unique dimensionless curve for fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schaffler MB, Choi K, Milgrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 17:521–525

    Article  PubMed  CAS  Google Scholar 

  2. Frank JD, Ryan M, Kalscheur VL, Ruaux-Mason CP, Hozak RR, Muir P (2002) Aging and accumulation of microdamage in canine bone. Bone 30:201–206

    Article  PubMed  CAS  Google Scholar 

  3. Muir P, Johnson KA, Ruaux-Mason CP (1999) In vivo matrix microdamage in a naturally occurring canine fatigue fracture. Bone 25:571–576

    Article  PubMed  CAS  Google Scholar 

  4. Martin RB, Stover SM, Gibson VA, Gibeling JC, Griffin LV (1996) In vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis. J Orthop Res 14:794–801

    Article  PubMed  CAS  Google Scholar 

  5. Nunamaker DM, Butterweck DM, Provost MT (1990) Fatigue fractures in thoroughbred racehorses: relationships with age, peak bone strain, and training. J Orthop Res 8:604–611

    Article  PubMed  CAS  Google Scholar 

  6. Taylor D, Lee TC (1998) Measuring the shape and size of microcracks in bone. J Biomech 31:1177–1180

    Article  PubMed  CAS  Google Scholar 

  7. Wayne RK, Ostrander EA (1999) Origin, genetic diversity, and genome structure of the domestic dog. Bioessays 21:247–257

    Article  PubMed  CAS  Google Scholar 

  8. Muir P, Ruaux-Mason CP (2000) Microcrack density and length in the proximal and distal metaphyses of the humerus and radius in dogs. Am J Vet Res 61:6–8

    Article  PubMed  CAS  Google Scholar 

  9. Forwood MR, Parker AW (1989) Microdamage in response to repetitive torsional loading in the rat tibia. Calcif Tissue Int 45:47–53

    Article  PubMed  CAS  Google Scholar 

  10. Brianza SZ, D’Amelio P, Pugno N, Delise M, Bignardi C, Isaia G (2007) Allometric scaling and biomechanical behavior of the bone tissue: an experimental intraspecific investigation. Bone 40:1635–1642

    Article  PubMed  Google Scholar 

  11. Brianza SZ, Delise M, Maddalena Ferraris M, D’Amelio P, Botti P (2006) Cross-sectional geometrical properties of distal radius and ulna in large, medium and toy breed dogs. J Biomech 39:302–311

    Article  PubMed  Google Scholar 

  12. Li Y, Deeb B, Pendergrass W, Wolf N (1996) Cellular proliferative capacity and life span in small and large dogs. J Gerontol A Biol Sci Med Sci 51:B403–B408

    PubMed  CAS  Google Scholar 

  13. Patronek GJ, Waters DJ, Glickman LT (1997) Comparative longevity of pet dogs and humans: implications for gerontology research. J Gerontol A Biol Sci Med Sci 52:B171–B178

    PubMed  CAS  Google Scholar 

  14. Greer KA, Canterberry SC, Murphy KE (2007) Statistical analysis regarding the effects of height and weight on life span of the domestic dog. Res Vet Sci 82:208–214

    Article  PubMed  Google Scholar 

  15. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  16. Burr DB, Stafford T (1990) Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage. Clin Orthop Relat Res 260:305–308

    PubMed  Google Scholar 

  17. Norman TL, Wang Z (1997) Microdamage of human cortical bone: incidence and morphology in long bones. Bone 20:375–379

    Article  PubMed  CAS  Google Scholar 

  18. Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP (2000) Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone 26:375–380

    Article  PubMed  CAS  Google Scholar 

  19. Stout SD, Paine RR (1994) Bone remodeling rates: a test of an algorithm for estimating missing osteons. Am J Phys Anthropol 93:123–129

    Article  PubMed  CAS  Google Scholar 

  20. Hattner R, Frost HM (1963) Mean skeletal age: its meaning and a method of calculation. Henry Ford Hosp Med Bull 11:201–216

    PubMed  CAS  Google Scholar 

  21. Taylor D, Lee TC (2003) Microdamage and mechanical behaviour: predicting failure and remodelling in compact bone. J Anat 203:203–211

    Article  PubMed  CAS  Google Scholar 

  22. Rubin CT (1984) Skeletal strain and the functional significance of bone architecture. Calcif Tissue Int 36(Suppl 1):S11–S18

    Article  PubMed  Google Scholar 

  23. Rubin CT, Lanyon LE (1982) Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog. J Exp Biol 101:187–211

    PubMed  CAS  Google Scholar 

  24. Fazzalari NL, Forwood MR, Manthey BA, Smith K, Kolesik P (1998) Three-dimensional confocal images of microdamage in cancellous bone. Bone 23:373–378

    Article  PubMed  CAS  Google Scholar 

  25. Burr DB, Milgrom C, Fyhrie D, Forwood M, Nyska M, Finestone A, Hoshaw S, Saiag E, Simkin A (1996) In vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410

    Article  PubMed  CAS  Google Scholar 

  26. Schaffler MB, Radin EL, Burr DB (1989) Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10:207–214

    Article  PubMed  CAS  Google Scholar 

  27. Moyle DD, Welborn JW III, Cooke FW (1978) Work to fracture of canine femoral bone. J Biomech 11:435–440

    Article  PubMed  CAS  Google Scholar 

  28. Barth RW, Williams JL, Kaplan FS (1992) Osteon morphometry in females with femoral neck fractures. Clin Orthop Relat Res 283:178–186

    PubMed  Google Scholar 

  29. Yeni YN, Brown CU, Wang Z, Norman TL (1997) The influence of bone morphology on fracture toughness of the human femur and tibia. Bone 21:453–459

    Article  PubMed  CAS  Google Scholar 

  30. Moyle DD, Bowden RW (1984) Fracture of human femoral bone. J Biomech 17:203–213

    Article  PubMed  CAS  Google Scholar 

  31. Corondan G, Haworth WL (1986) A fractographic study of human long bone. J Biomech 19:207–218

    Article  PubMed  CAS  Google Scholar 

  32. Farley CT, Glasheen J, McMahon TA (1993) Running springs: speed and animal size. J Exp Biol 185:71–86

    PubMed  CAS  Google Scholar 

  33. Taylor CR, Schmidt-Nielsen K, Raab JL (1970) Scaling of energetic cost of running to body size in mammals. Am J Physiol 219:1104–1107

    PubMed  CAS  Google Scholar 

  34. McMahon TA (1975) Using body size to understand the structural design of animals: quadrupedal locomotion. J Appl Physiol 39:619–627

    PubMed  CAS  Google Scholar 

  35. Heglund NC, Taylor CR, McMahon TA (1974) Scaling stride frequency and gait to animal size: mice to horses. Science 186:1112–1113

    Article  PubMed  CAS  Google Scholar 

  36. Gasc JP (2001) Comparative aspects of gait, scaling and mechanics in mammals. Comp Biochem Physiol A Mol Integr Physiol 131:121–133

    Article  PubMed  CAS  Google Scholar 

  37. Burr DB, Martin RB (1993) Calculating the probability that microcracks initiate resorption spaces. J Biomech 26:613–616

    Article  PubMed  CAS  Google Scholar 

  38. O’Brien FJ, Taylor D, Dickson GR, Lee TC (2000) Visualisation of three-dimensional microcracks in compact bone. J Anat 197(3):413–420

    Article  PubMed  Google Scholar 

  39. Brown CU, Yeni YN, Norman TL (2000) Fracture toughness is dependent on bone location—a study of the femoral neck, femoral shaft, and the tibial shaft. J Biomed Mater Res 49:380–389

    Article  PubMed  CAS  Google Scholar 

  40. Pugno N (2006) New quantized failure criteria: application to nanotubes and nanowires. Int J Fract 141:311–328

    Article  Google Scholar 

  41. Pugno MC, Cornetti P, Carpinteri A (2006) A unified law for fatigue crack growth. J Mech Phys Solids 54:1333–1349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P. D. was supported by a fellowship from the Regione Piemonte, and S. Z. M. B. was supported by a fellowship of MIUR (COFIN 2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Z. M. Brianza.

Additional information

The authors have stated that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 310 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brianza, S.Z.M., D’Amelio, P., Pugno, N. et al. Microdamage Accumulation Changes According to Animal Mass: An Intraspecies Investigation. Calcif Tissue Int 88, 409–415 (2011). https://doi.org/10.1007/s00223-011-9470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9470-8

Keywords

Navigation