Skip to main content

Advertisement

Log in

Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We analyzed morphological characteristics of osteons along with the geometrical indices of individual osteonal mechanical stability in young, healthy aged, untreated osteoporotic, and bisphosphonate-treated osteoporotic women. Our study revealed significant intergroup differences in osteonal morphology and osteocyte lacunae indicating different remodeling patterns with implications for fracture susceptibility.

Introduction

Bone remodeling is the key process in bone structural reorganization, and its alterations lead to changes in bone mechanical strength. Since osteons reflect different bone remodeling patterns, we hypothesize that the femoral cortices of females under miscellaneous age, disease and treatment conditions will display distinct osteonal morphology and osteocyte lacunar numbers along with different mechanical properties.

Methods

The specimens used in this study were collected at autopsy from 35 female donors (young group, n = 6, age 32 ± 8 years; aged group, n = 10, age 79 ± 9 years; osteoporosis group, n = 10, age 81 ± 9 years; and bisphosphonate group, n = 9, age 81 ± 7 years). Von Kossa-modified stained femoral proximal diaphyseal sections were evaluated for osteonal morphometric parameters and osteocyte lacunar data. Geometrical indices of osteonal cross-sections were calculated to assess the mechanical stability of individual osteons, in terms of their resistance to compression, bending, and buckling.

Results

The morphological assessment of osteons and quantification of their osteocyte lacunae revealed significant differences between the young, aged, osteoporosis and bisphosphonate-treated groups. Calculated osteonal geometric indices provided estimates of the individual osteons’ resistance to compression, bending and buckling based on their size. In particular, the osteons in the bisphosphonate-treated group presented improved osteonal geometry along with increased numbers of osteocyte lacunae that had been formerly impaired due to aging and osteoporosis.

Conclusions

The data derived from osteons (as the basic structural units of the cortical bone) in different skeletal conditions can be employed to highlight structural factors contributing to the fracture susceptibility of various groups of individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. A limitation of this framework is the fact that the osteons are embedded in the bone matrix and fully surrounded by interstitial bone and other osteons; thus, the osteons in bone should be considered as an element in a complex composite [29], where the mechanical properties are influenced not only by the properties of the osteon but also by the surrounding matrix [30]. Further studies are required to quantify the distribution of osteons in the matrix to better understand the contributions of the interstitial bone.

References

  1. Cooper C, Campion G, Melton LJ (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2:285–289

    Article  PubMed  CAS  Google Scholar 

  2. Cole Z, Dennison E, Cooper C (2008) Osteoporosis epidemiology update. Curr Rheum Rep 10:92–96

    Article  Google Scholar 

  3. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475

    Article  PubMed  Google Scholar 

  4. Milovanovic P, Djonic D, Marshall RP, Hahn M, Nikolic S, Zivkovic V, Amling M, Djuric M (2012) Micro-structural basis for particular vulnerability of the superolateral neck trabecular bone in the postmenopausal women with hip fractures. Bone 50:63–68

    Article  PubMed  Google Scholar 

  5. Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135

    Article  PubMed  Google Scholar 

  6. Busse B, Hahn M, Schinke T, Püschel K, Duda GN, Amling M (2010) Reorganization of the femoral cortex due to age-, sex-, and endoprosthetic-related effects emphasized by osteonal dimensions and remodeling. J Biomed Mater Res A 92A:1440–1451

    CAS  Google Scholar 

  7. Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  8. Skedros JG, Clark GC, Sorenson SM, Taylor KW, Qiu S (2011) Analysis of the effect of osteon diameter on the potential relationship of osteocyte lacuna density and osteon wall thickness. Anat Rec A 294:1472–1485

    Article  Google Scholar 

  9. Rauch F, Travers R, Glorieux FH (2007) Intracortical remodeling during human bone development—a histomorphometric study. Bone 40:274–280

    Article  PubMed  Google Scholar 

  10. Metz LN, Martin RB, Turner AS (2003) Histomorphometric analysis of the effects of osteocyte density on osteonal morphology and remodeling. Bone 33:753–759

    Article  PubMed  Google Scholar 

  11. Thomas CDL, Stein MS, Feik SA, Wark JD, Clement JG (2000) Determination of age at death using combined morphology and histology of the femur. J Anat 196:463–471

    Article  PubMed  Google Scholar 

  12. Ascenzi M-G, Liao VP, Lee BM, Billi F, Zhou H, Lindsay R, Cosman F, Nieves J, Bilezikian JP, Dempster DW (2012) Parathyroid hormone treatment improves the cortical bone microstructure by improving the distribution of type I collagen in postmenopausal women with osteoporosis. J Bone Miner Res 27:702–712

    Article  PubMed  CAS  Google Scholar 

  13. Britz HM, Thomas CDL, Clement JG, Cooper DML (2009) The relation of femoral osteon geometry to age, sex, height and weight. Bone 45:77–83

    Article  PubMed  Google Scholar 

  14. Barth RW, Williams JL, Kaplan FS (1992) Osteon morphometry in females with femoral neck fractures. Clin Orthop Relat Res 283:178–186

    PubMed  Google Scholar 

  15. Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304

    Article  PubMed  CAS  Google Scholar 

  16. Beck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU (1990) Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 25:6–18

    Article  PubMed  CAS  Google Scholar 

  17. Seeman E (2008) Structural basis of growth-related gain and age-related loss of bone strength. Rheumatology 47:iv2–iv8

    Article  PubMed  Google Scholar 

  18. Marotti G (1996) The structure of bone tissues and the cellular control of their deposition. Ital J Anat Embryol 101:25–79

    PubMed  CAS  Google Scholar 

  19. Power J, Doube M, van Bezooijen RL, Loveridge N, Reeve J (2012) Osteocyte recruitment declines as the osteon fills in: interacting effects of osteocytic sclerostin and previous hip fracture on the size of cortical canals in the femoral neck. Bone 50:1107–1114

    Article  PubMed  Google Scholar 

  20. Qiu S, Rao DS, Palnitkar S, Parfitt AM (2010) Dependence of bone yield (volume of bone formed per unit of cement surface area) on resorption cavity size during osteonal remodeling in human rib: implications for osteoblast function and the pathogenesis of age-related bone loss. J Bone Miner Res 25:423–430

    Article  PubMed  Google Scholar 

  21. Skedros JG, Kiser CJ, Keenan KE, Thomas SC (2011) Analysis of osteon morphotype scoring schemes for interpreting load history: evaluation in the chimpanzee femur. J Anat 218:480–499

    Article  PubMed  Google Scholar 

  22. Hahn M, Vogel M, Delling G (1991) Undecalcified preparation of bone tissue: report of technical experience and development of new methods. Virchows Arch A Pathol Anat Histopathol 418:1–7

    Article  PubMed  CAS  Google Scholar 

  23. Donath K, Breuner G (1982) A method for the study of undecalcified bones and teeth with attached soft tissues. The Säge–Schliff (sawing and grinding) technique. J Oral Pathol 11:318–326

    Article  PubMed  CAS  Google Scholar 

  24. Busse B, Djonic D, Milovanovic P, Hahn M, Püschel K, Ritchie RO, Djuric M, Amling M (2010) Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 9:1065–1075

    Article  PubMed  CAS  Google Scholar 

  25. Bell KL, Loveridge N, Jordan GR, Power J, Constant CR, Reeve J (2000) A novel mechanism for induction of increased cortical porosity in cases of intracapsular hip fracture. Bone 27:297–304

    Article  PubMed  CAS  Google Scholar 

  26. Jordan GR, Loveridge N, Bell KL, Power J, Rushton N, Reeve J (2000) Spatial clustering of remodeling osteons in the femoral neck cortex: a cause of weakness in hip fracture? Bone 26:305–313

    Article  PubMed  CAS  Google Scholar 

  27. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17

    Article  PubMed  Google Scholar 

  28. Currey J (2012) The structure and mechanics of bone. J Mater Sci 47:41–54

    Article  CAS  Google Scholar 

  29. Guo XE, Liang LC, Goldstein SA (1998) Micromechanics of osteonal cortical bone fracture. J Biomech Eng 120:112–117

    Article  PubMed  CAS  Google Scholar 

  30. Bigley RF, Griffin LV, Christensen L, Vandenbosch R (2006) Osteon interfacial strength and histomorphometry of equine cortical bone. J Biomech 39:1629–1640

    Article  PubMed  Google Scholar 

  31. Chavassieux PM, Arlot ME, Reda C, Wei L, Yates AJ, Meunier PJ (1997) Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest 100:1475–1480

    Article  PubMed  CAS  Google Scholar 

  32. Burr DB, Diab T, Koivunemi A, Koivunemi M, Allen MR (2009) Effects of 1 to 3 years' treatment with alendronate on mechanical properties of the femoral shaft in a canine model: implications for subtrochanteric femoral fracture risk. J Orthop Res 27:1288–1292

    Article  PubMed  CAS  Google Scholar 

  33. Faingold A, Cohen SR, Wagner HD (2012) Nanoindentation of osteonal bone lamellae. J Mech Behav Biomed Mater 9:198–206

    Article  PubMed  Google Scholar 

  34. Wu Y, Bergot C, Jolivet E, Zhou LQ, Laredo J-D, Bousson V (2009) Cortical bone mineralization differences between hip-fractured females and controls. A microradiographic study. Bone 45:207–212

    Article  PubMed  Google Scholar 

  35. Bergot C, Wu Y, Jolivet E, Zhou LQ, Laredo JD, Bousson V (2009) The degree and distribution of cortical bone mineralization in the human femoral shaft change with age and sex in a microradiographic study. Bone 45:435–442

    Article  PubMed  CAS  Google Scholar 

  36. Bala Y, Depalle B, Douillard T, Meille S, Clément P, Follet H, Chevalier J, Boivin G (2011) Respective roles of organic and mineral components of human cortical bone matrix in micromechanical behavior: an instrumented indentation study. J Mech Behav Biomed Mater 4:1473–1482

    Article  PubMed  CAS  Google Scholar 

  37. Giraud-Guille MM (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42:167–180

    Article  PubMed  CAS  Google Scholar 

  38. Ascenzi A, Bonucci E (1968) The compressive properties of single osteons. Anat Rec 161:377–391

    Article  PubMed  CAS  Google Scholar 

  39. Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP (2011) Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly Zoledronic acid. J Bone Miner Res 26:12–18

    Article  PubMed  CAS  Google Scholar 

  40. Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, Chapurlat R, Chevalier J, Boivin G (2012) Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res 27:825–834

    Article  PubMed  CAS  Google Scholar 

  41. Hazenberg J, Taylor D, Lee T (2007) The role of osteocytes and bone microstructure in preventing osteoporotic fractures. Osteoporos Int 18:1–8

    Article  PubMed  Google Scholar 

  42. Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, Busse B, Alliston T, Ager JW, Ritchie RO (2011) Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci USA 108:14416–14421

    Article  PubMed  CAS  Google Scholar 

  43. Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10:817–822

    Article  PubMed  CAS  Google Scholar 

  44. Barth HD, Zimmermann EA, Schaible E, Tang SY, Alliston T, Ritchie RO (2011) Characterization of the effects of X-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials 32:8892–8904

    Article  PubMed  CAS  Google Scholar 

  45. Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J 13:101–112

    Google Scholar 

  46. Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP (2000) Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone 26:375–380

    Article  PubMed  CAS  Google Scholar 

  47. Duque G, Troen BR (2008) Understanding the mechanisms of senile osteoporosis: new facts for a major geriatric syndrome. J Am Geriatr Soc 56:935–941

    Article  PubMed  Google Scholar 

  48. Russell RG (2011) Bisphosphonates: the first 40 years. Bone 49:2–19

    Article  PubMed  CAS  Google Scholar 

  49. Allen MR, Burr DB (2011) Bisphosphonate effects on bone turnover, microdamage, and mechanical properties: what we think we know and what we know that we don't know. Bone 49:56–65

    Article  PubMed  CAS  Google Scholar 

  50. Saag K, Lindsay R, Kriegman A, Beamer E, Zhou W (2007) A single zoledronic acid infusion reduces bone resorption markers more rapidly than weekly oral alendronate in postmenopausal women with low bone mineral density. Bone 40:1238–1243

    Article  PubMed  CAS  Google Scholar 

  51. Dempster DW, Zhou H, Recker RR, Brown JP, Bolognese MA, Recknor CP, Kendler DL, Lewiecki EM, Hanley DA, Rao DS, Miller PD, Woodson GC, Lindsay R, Binkley N, Wan X, Ruff VA, Janos B, Taylor KA (2012) Skeletal Histomorphometry in subjects on teriparatide or zoledronic acid therapy (SHOTZ) study: a randomized controlled trial. J Clin Endocrinol Metab 97:2799–2808

    Article  PubMed  CAS  Google Scholar 

  52. Black DM, Schwartz AV, Ensrud K, Cauley J, Levis S, Quandt SA, Satterfield S, Wallace RB, Bauer DC, Palermo L, Wehren LE, Lombardi A, Santora AC, Cummings SR (2006) Effects of continuing or stopping alendronate after 5 years of treatment: the fracture intervention trial long-term extension (flex): a randomized trial. J Am Med Assoc 296:2927–2938

    Article  CAS  Google Scholar 

  53. McClung M, Recker R, Miller P, Fiske D, Minkoff J, Kriegman A, Zhou W, Adera M, Davis J (2007) Intravenous zoledronic acid 5 mg in the treatment of postmenopausal women with low bone density previously treated with alendronate. Bone 41:122–128

    Article  PubMed  CAS  Google Scholar 

  54. Devogelaer JP, Broll H, Correa-Rotter R, Cumming DC, Nagant de Deuxchaisnes C, Geusens P, Hosking D, Jaeger P, Kaufman JM, Leite M, Leon J, Liberman U, Menkes CJ, Meunier PJ, Reid I, Rodriguez J, Romanowicz A, Seeman E, Vermeulen A, Hirsch LJ, Lombardi A, Plezia K, Santora AC, Yates AJ, Yuan W (1996) Oral alendronate induces progressive increases in bone mass of the spine, hip, and total body over 3 years in postmenopausal women with osteoporosis. Bone 18:141–150

    Article  PubMed  CAS  Google Scholar 

  55. Bone HG, Hosking D, Devogelaer J-P, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC, Liberman UA (2004) Ten years' experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med 350:1189–1199

    Article  PubMed  CAS  Google Scholar 

  56. Martin RB (2000) Toward a unifying theory of bone remodeling. Bone 26:1–6

    Article  PubMed  CAS  Google Scholar 

  57. Qiu S, Rao DS, Palnitkar S, Parfitt AM (2002) Relationships between osteocyte density and bone formation rate in human cancellous bone. Bone 31:709–711

    Article  PubMed  CAS  Google Scholar 

  58. Pazzaglia UE, Congiu T, Franzetti E, Marchese M, Spagnuolo F, Di Mascio L, Zarattini G (2012) A model of osteoblast–osteocyte kinetics in the development of secondary osteons in rabbits. J Anat 220:372–383

    Article  PubMed  Google Scholar 

  59. Skedros JG, Keenan KE, Williams TJ, Kiser CJ (2013) Secondary osteon size and collagen/lamellar organization (“osteon morphotypes”) are not coupled, but potentially adapt independently for local strain mode or magnitude. J Struct Biol 181:95–107

    Article  PubMed  Google Scholar 

  60. Simões JA, Vaz MA, Blatcher S, Taylor M (2000) Influence of head constraint and muscle forces on the strain distribution within the intact femur. Med Eng Phys 22:453–459

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Petar Milovanovic is a fellow of the DAAD (Deutscher Akademischer Austauschdienst—German Academic Exchange Service; A/11/83161) and Serbian Ministry of Science (III45005). Dr. Björn Busse is a fellow of the DFG—Emmy Noether program (Deutsche Forschungsgemeinschaft—German Research Foundation; BU 2562/2-1). This study was supported by grants from the South-Eastern-European-Cooperation, University Medical Center Hamburg-Eppendorf and from the Federal Ministry of Education and Research (BMBF) through the consortium “BioAssett” and “Osteopath.”

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Busse.

Additional information

A. Bernhard and P. Milovanovic contributed equally and therefore share first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernhard, A., Milovanovic, P., Zimmermann, E.A. et al. Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women. Osteoporos Int 24, 2671–2680 (2013). https://doi.org/10.1007/s00198-013-2374-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2374-x

Keywords

Navigation