Skip to main content
Log in

Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The condensation of glycine to form oligoglycines during wet-dry fluctuations on clay surfaces was enhanced up to threefold or greater by small amounts of histidyl-histidine. In addition, higher relative yields of the longer oligomers were produced. Other specific dipeptides tested gave no enhancement, and imidazole, histidine, and N-acetylhistidine gave only slight enhancements. Histidyl-histidine apparently acts as a true catalyst (in the sense of repeatedly catalyzing the reaction), since up to 52 nmol of additional glycine were incorporated into oligoglycine for each nmol of catalyst added. This is the first known instance of a peptide or similar molecule demonstrating a catalytic turnover number greater than unity in a prebiotic oligomer synthesis reaction, and suggests that histidyl-histidine is a model for a primitive prebiotic protoenzyme. Catalysis of peptide bond synthesis by a molecule which is itself a peptide implies that related systems may be capable of exhibiting autocatalytic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender ML, Brubacher LJ (1973) Catalysis and enzyme action. McGraw-Hill, New York

    Google Scholar 

  • Beyerman HC, Maassen van den Brink W (1966). In: Zervas L (ed) Peptides, Pergamon Press, London, p 85

    Google Scholar 

  • Callahan PX, Shepard JA, Reilly TJ, McDonald JK, Ellis S (1970) Anal Biochem 38:330–356

    PubMed  Google Scholar 

  • Clark GL (ed) (1966) The encyclopedia of chemistry, 2nd ed. New York, p 187

  • Dose, K (1971) In: Schwartz, AW (ed) Theory and experiment in exobiology, vol I. Wolters-Noordhoff, Groningen, p 42

    Google Scholar 

  • Ehler KW, Orgel LE (1976) Biochim Biophys Acta 434:233–243

    PubMed  Google Scholar 

  • Frost AA, Pearson RG (1961) Kinetics and mechanism, 2nd ed. Wiley, New York, p 200

    Google Scholar 

  • Hawley GG (ed) (1977) The condensed chemical dictionary, 9th ed. Van Nostrand, New York, p 171

    Google Scholar 

  • Ibanez JD, Kimball AP, Oró J (1971a) J Mol Evol 1:12–114

    Google Scholar 

  • Ibanez J, Kimball AP, Oró J (1971b) In: Buvet R, Ponnamperuma C (eds) Chemical evolution and the origin of life. North-Holland, Amsterdam, p 171

    Google Scholar 

  • Jungck JR, Fox SW (1973) Naturwissenschaften 60:425–487

    PubMed  Google Scholar 

  • Kapoor A (1972) In: Lande S (ed) Progress in peptide research II. Gordon and Breach, New York, p 335

    Google Scholar 

  • Kenyon DH, Steinman G (1969) Biochemical predestination. McGraw-Hill, New York, p 211

    Google Scholar 

  • Lahav N, Chang S (1976) J Mol Evol 8:57–380

    Google Scholar 

  • Lahav N, White DH, Chang S (1978) Science 201:6–69

    Google Scholar 

  • Lohrmann R, Orgel LE (1973) Nature 244:418–420

    PubMed  Google Scholar 

  • Martin EA (ed) (1976) A dictionary of life sciences. MacMillan Press, London, p 52

    Google Scholar 

  • Paecht-Horowitz M (1976) Origins Life 7:369–381

    Google Scholar 

  • Pattee HH (1965) Adv Enzymol 27:381–415

    PubMed  Google Scholar 

  • Photaki I, Sakarellou-Daitsiotou M (1976) J Chem Soc Perkin I:589–591

    Google Scholar 

  • Pongs O, Ts'o POP (1969) Biochem Biophys Res Commun 36:475–481

    PubMed  Google Scholar 

  • Renz M, Lohrmann R, Orgel LE (1971) Biochim Biophys Acta 240:475–481

    Google Scholar 

  • Rideal EK (1968) Concepts in catalysis. Academic Press, New York, p 4

    Google Scholar 

  • Sawai H, Lohrmann R, Orgel LE (1975) J Mol Evol 6:165–184

    PubMed  Google Scholar 

  • Stenesh J, (ed) (1975) Dictionary of biochemistry. Wiley, New York, p 44

    Google Scholar 

  • Stephen-Sherwood E, Odom DG, Oró J (1974) J Mol Evol 3:323–330

    PubMed  Google Scholar 

  • Stillwell W, Steinman G, McCarl RL (1972) Bioorg Chem 2:1–10

    Google Scholar 

  • Verlander MS, Lohrmann R, Orgel LE (1973) J Mol Evol 2:303–316

    PubMed  Google Scholar 

  • Weber AL, Lacey JC Jr(1974) Biochim Biophys Acta 349:226–234

    PubMed  Google Scholar 

  • Weber AL, Lacey JC Jr (1975) J Mol Evol 6:309–320

    PubMed  Google Scholar 

  • Weber AL, Orgel LE (1978) J Mol Evol 11:9–16

    PubMed  Google Scholar 

  • Weber AL, Caroon JM, Warden JT, Lemmon RM, Calvin M (1977) Biosystems 8:277–286

    PubMed  Google Scholar 

  • White DH (1980) J Mol Evol 16:121–147

    PubMed  Google Scholar 

  • White DH, Erickson JC (1980) J Mol Evol, in press

  • Williams RJ, Lansford EM Jr. (eds) (1977) The encyclopedia of biochemistry, Krieger Huntington NY, p 205

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, D.H., Erickson, J.C. Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment. J Mol Evol 16, 279–290 (1980). https://doi.org/10.1007/BF01804979

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01804979

Key words

Navigation