Skip to main content

Procedure Model to Support the Recycling-Oriented Design of Lithium-Ion Batteries for Electric Vehicles

  • Chapter
  • First Online:
EcoDesign for Sustainable Products, Services and Social Systems I

Abstract

The ever-increasing complexity and design variability of modern lithium-ion batteries (LIBs) and battery systems prevent their cost-effective and efficient recycling. As a consequence, the generation of recyclates to competitive prices compared to virgin materials is currently impossible. This is troublesome as the extraction of the resulting demand for raw materials is associated with high environmental and social burdens. Additionally, the prospected increase in electric vehicle (EV) sales will further intensify this problem. In this context, the purposeful design of products has gained increasing interest, being a possibility to address issues regarding the recyclability of a product, already in its development. The challenge for an efficient and effective design for recycling approach is the complexity of a multitude of different, sometimes conflicting requirements, which have to be defined and regarded throughout the process. Therefore, methods and tools for an easily accessible overview of what needs to be addressed and proposals for specific courses of action are needed. In our work, we identify necessary elements and information-flows for the successful development of guidelines that enable the implementation of design for recycling strategies for LIBs. This is done by analysing currently applied recycling methods and the associated prevailing issues that partially result from current battery designs. Furthermore, already existing guidelines and development procedures for a recyclable design of LIBs are evaluated to identify, why their integration in the industry was not successful thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qiao Q, Zhao F, Liu Z et al (2019) Electric vehicle recycling in China: economic and environmental benefits. Resour Conserv Recycl 140:45–53. https://doi.org/10.1016/j.resconrec.2018.09.003

    Article  Google Scholar 

  2. Hao H, Qiao Q, Liu Z et al (2017) Impact of recycling on energy consumption and greenhouse gas emissions from electric vehicle production: the China 2025 case. Resour Conserv Recycl 122:114–125. https://doi.org/10.1016/j.resconrec.2017.02.005

    Article  Google Scholar 

  3. Halleux V (2021) New EU regulatory framework for batteries: Setting sustainability requirements, EPRS: European Parliamentary Research Service. Belgium. Retrieved from https://policycommons.net/artifacts/1426784/new-eu-regulatory-framework-for-batteries/2041309/ on 07 Aug 2023. CID: 20.500.12592/jmnnpt

  4. European Commission (2019) Commission Staff Working Document on the evaluation of the Directive 2006/66/EC on batteries and accumulators and waste batteries and accumulators and repealing Directive 91/157/EEC

    Google Scholar 

  5. Velázquez-Martínez O, Valio J, Santasalo-Aarnio A et al (2019) A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries 5:68. https://doi.org/10.3390/batteries5040068

    Article  CAS  Google Scholar 

  6. Thompson DL, Hartley JM, Lambert SM et al (2020) The importance of design in lithium ion battery recycling—a critical review. Green Chem 22:7585–7603. https://doi.org/10.1039/D0GC02745F

    Article  CAS  Google Scholar 

  7. Gaines L, Richa K, Spangenberger J (2018) Key issues for Li-ion battery recycling. MRS Energy Sustain 5:E14. https://doi.org/10.1557/mre.2018.13

    Article  Google Scholar 

  8. Elwert T, Goldmann D, Römer F et al (2016) Current developments and challenges in the recycling of key components of (hybrid) electric vehicles. Recycling 1:25–60. https://doi.org/10.3390/recycling1010025

    Article  Google Scholar 

  9. Fleischer J, Gerlitz E, Rieβ S et al (2021) Concepts and requirements for flexible disassembly Systems for Drive Train Components of electric vehicles. Procedia CIRP 98:577–582. https://doi.org/10.1016/j.procir.2021.01.154

    Article  Google Scholar 

  10. VDE Verband der Elektrotechnik Elektronik Informationstechnik e. V. (2015) Kompendium: Li-Ionen-Batterien

    Google Scholar 

  11. Xu C, Dai Q, Gaines L et al (2020) Future material demand for automotive lithium-based batteries. Commun Mater 1:437. https://doi.org/10.1038/s43246-020-00095-x

    Article  Google Scholar 

  12. Schaal S (2021) Power day: Volkswagen plans standard battery cell. electrive.com

  13. Verein Deutscher Maschinen- und Anlagenbauer (2020) Roadmap Batterieproduktionsmittel 2030 - Update 2020

    Google Scholar 

  14. Miao Y, Hynan P, Jouanne AV et al (2019) Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 12:1074. https://doi.org/10.3390/en12061074

    Article  CAS  Google Scholar 

  15. Jocher P, Steinhardt M, Ludwig S et al (2021) A novel measurement technique for parallel-connected lithium-ion cells with controllable interconnection resistance. J Power Sources 503:230030. https://doi.org/10.1016/j.jpowsour.2021.230030

    Article  CAS  Google Scholar 

  16. Gerlitz E, Greifenstein M, Hofmann J et al (2021) Analysis of the variety of lithium-ion battery modules and the challenges for an agile automated disassembly system. Procedia CIRP 96:175–180. https://doi.org/10.1016/j.procir.2021.01.071

    Article  Google Scholar 

  17. Seelhorst B, Stefaniak T, Odenbach R et al. (2016) Entwicklung eines Verfahrens zum Austausch von Taschenzellen bei industriell gefertigten Batteriemodulen. Conference: 14. Gemeinsames Kolloqium Konstruktionstechnik 2016

    Google Scholar 

  18. Raiser S (2012) Modular plate carrier concept for mounting and embedded cooling of pouch cell battery assemblies (US 2012/0040225 A1)

    Google Scholar 

  19. Madani SS, Swierczynski MJ, Kaer SK (2017) A review of thermal management and safety for lithium ion batteries. In: 2017 twelfth international conference on ecological vehicles and renewable energies (EVER). IEEE, Piscataway, NJ, pp 1–20

    Google Scholar 

  20. RICHTLINIE 2008/98/EG DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 19. November 2008 über Abfälle und zur Aufhebung bestimmter Richtlinien, 2008

    Google Scholar 

  21. Colledani M, Battaïa O (2016) A decision support system to manage the quality of end-of-life products in disassembly systems. CIRP Ann 65:41–44. https://doi.org/10.1016/j.cirp.2016.04.121

    Article  Google Scholar 

  22. Ulrike Lange (2017) VDI ZRE Kurzanalyse 18: Ressourceneffizienz durch Remanufacturing: Industrielle Aufarbeitung von Altteilen

    Google Scholar 

  23. Bin H, Zhefei P, Xiangyu S et al (2018) Recycling of lithium-ion batteries: recent advances and perspectives. J Power Sources 399:274–286. https://doi.org/10.1016/j.jpowsour.2018.07.116

    Article  CAS  Google Scholar 

  24. An L(p) (2019) Recycling of spent lithium-ion batteries. Springer International, Cham

    Google Scholar 

  25. Passerini S, Bresser D, Moretti A et al (eds) (2020) Batteries: present and future energy storage challenges, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  26. Esslinger H (2011) Sustainable design: beyond the innovation-driven business model. J Prod Innov Manag 28:401–404. https://doi.org/10.1111/j.1540-5885.2011.00811.x

    Article  Google Scholar 

  27. European Commision: EU Science Hub Sustainable Product Policy. https://ec.europa.eu/jrc/en/research-topic/sustainable-product-policy#:~:text=The%20Ecodesign%20of%2

  28. Verein Deutscher Ingenieure (2002) German Standard VDI 2243 Part 1 12/00 - Recycling-oriented product development. ICS 03.100.40; 21.020

    Google Scholar 

  29. Verein Deutscher Ingenieure (2016) German Standard VDI 4800:2016-02 Part 1 - Resource efficiency Methodological principles and strategies. ICS 03.100.01, 13.020.01

    Google Scholar 

  30. Mossali E, Gentilini L, Merati G et al (2020) Methodology and application of electric vehicles battery packs Redesign for circular economy. Procedia CIRP 91:747–751. https://doi.org/10.1016/j.procir.2020.01.139

    Article  Google Scholar 

  31. Worrell E, Reuter MA (eds) (2014) Handbook of recycling: state-of-the-art for practitioners, analysts, and scientists. Elsevier, Amsterdam, Boston

    Google Scholar 

  32. Goodship V, Huisman J (eds) (2019) Waste electrical and electronic equipment (WEEE) handbook. Elsevier, Amsterdam

    Google Scholar 

  33. Norgren A, Carpenter A, Heath G (2020) Design for recycling principles applicable to selected clean energy technologies: crystalline-silicon photovoltaic modules, electric vehicle batteries, and wind turbine blades. J Sustain Metall 6:761. https://doi.org/10.1007/s40831-020-00313-3

    Article  Google Scholar 

  34. Huisman J, Stevels A, Baldé K et al (2019) Implementation road map and conditions for success. In: Goodship V, Huisman J (eds) Waste electrical and electronic equipment (WEEE) handbook. Elsevier, Amsterdam, pp 143–184

    Google Scholar 

  35. Vezzoli C, Ceschin F, Osanjo L et al (eds) (2018) Designing sustainable energy for all. Green Energy and Technology. Springer International, Cham

    Google Scholar 

  36. Verein Deutscher Ingenieure (2018) German Standard VDI 2221:2018-03 Part 1 - Design of technical products and systems model of product design. ICS 03.100.40

    Google Scholar 

  37. Ruiz V, Pfrang A, Kriston A et al (2018) A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renew Sustain Energy Rev 81:1427–1452. https://doi.org/10.1016/j.rser.2017.05.195

    Article  CAS  Google Scholar 

  38. Borky JM, Bradley TH (2019) Effective model-based systems engineering. Springer International, Cham

    Book  Google Scholar 

  39. Huth T, Inkermann D, Wilms R et al. (2018) Model-based process engineering. An approach to integrated product system and process modelling EMEASEC 2018

    Google Scholar 

  40. Ehrlenspiel K, Meerkamm H (2013) Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz. Zusammenarbeit, Hanser, München

    Book  Google Scholar 

  41. Huth T, Vietor T (2020) Systems Engineering in der Produktentwicklung: Verständnis, Theorie und Praxis aus ingenieurswissenschaftlicher Sicht. Gr Interakt Org 51:125–130. https://doi.org/10.1007/s11612-020-00505-1

    Article  Google Scholar 

  42. Heimes HH, Kampker A, Haunreiter A et al (2020) Product-requirement-model to approach the identification of uncertainties in battery systems development. Int J Interact Des Manuf 14:911–922. https://doi.org/10.1007/s12008-020-00666-9

    Article  Google Scholar 

Download references

Acknowledgement

This chapter evolved from the research project ReDesign (Development of design guidelines for the recycling-oriented design of battery systems in the context of the circular economy) funded by the German Federal Ministry for Education and Research (03XP0318). ReDesign is a part of the greenBatt cluster. The cluster’s objective is to develop, design and apply innovative technologies, methods and tools for energy- and material-efficient battery life cycle and closed material and resource loops.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Vysoudil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vysoudil, F. et al. (2023). Procedure Model to Support the Recycling-Oriented Design of Lithium-Ion Batteries for Electric Vehicles. In: Fukushige, S., Kobayashi, H., Yamasue, E., Hara, K. (eds) EcoDesign for Sustainable Products, Services and Social Systems I. Springer, Singapore. https://doi.org/10.1007/978-981-99-3818-6_26

Download citation

Publish with us

Policies and ethics