Skip to main content

Impedanzsensorik für Batteriezellen in Elektro-Fahrzeugen

  • Chapter
Automobil-Sensorik 2

Zusammenfassung

Die Zellimpedanz stellt als charakteristische Batteriegröße ein wichtiger Performance-Indikator dar. Darüber hinaus lässt sie sich jedoch durch Ihre starke Abhängigkeit von Betriebsbedingungen und Alterungszustand auch zur Diagnose verwenden. Ausgehend von den Sensitivitäten der Impedanz werden die möglichen Anwendungsszenarien aufgezeigt. Dabei wird speziell auf die Temperatursensitivität stärker eingegangen. Von dieser ausgehend werden schließlich Anforderungen an einen Impedanzsensor zur Bestimmung der Zellkerntemperatur abgeleitet und diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. D. A. Howey, et al., „Online Measurement of Battery Impedance Using Motor Controller Excitation“, IEEE transactions on vehicular technology, pp. 2557-2566, 2014.

    Google Scholar 

  2. N. Sassano, et al., „Batterie-Zellensensoren mit drahtloser Kommunikation und verteilter Signalverarbeitung“, in Thomas Tille (Hrsg.) Automobil-Sensorik Ausgewählte Sensorprinzipien und deren automobile Anwendung, Springer, 2016, pp. Kapitel 2, Seite 45-63.

    Chapter  Google Scholar 

  3. A. Lasia, “Electrochemical Impedance Spectroscopy and its Applications”, Springer, 2014.

    Book  Google Scholar 

  4. M. E. Orazem und B. Tribollet, “Electrochemical Impedance Spectroscopy”, John Wiley & Sons, 2011.

    Google Scholar 

  5. P. Hong, et al, „Modeling and Experiment Validation of the DC/DC Converter for Online AC Impedance Identification of the Lithium-Ion Battery“, SAE Int. J. Alt. Power., pp. 233-245, 2017.

    Google Scholar 

  6. J. Illig, et al., „Understanding the impedance spectrum of 18650 LiFePO4-cells“, J. Power Sources, pp. 670-679, 2013.

    Google Scholar 

  7. J. Landesfeind, et al., „An Analysis Protocol for Three-Electrode Li-Ion Battery Impedance Spectra: Part I. Analysis of a High-Voltage Positive Electrode“, J. Electrochem. Soc., pp. A1773-A1783, 2017.

    Google Scholar 

  8. J. P. Schmidt, et al., „Measurement of the internal cell temperature via impedance: Evaluation and application of a new method“, J. Power Sources, pp. 110-117, 2013.

    Google Scholar 

  9. N. Damay, et al., „Thermal modeling of large prismatic LiFePO4/graphite battery. Coupled thermal and heat generation models for characterization and simulation“, J. Power Sources, pp. 37-45, 2015.

    Google Scholar 

  10. G.-H. Kim, et al., „A three-dimensional thermal abuse model for lithium-ion cells“, J. Power Sources, pp. 476-489, 2007.

    Google Scholar 

  11. M. P. Felder et al., „ State of charge classification for lithium-ion batteries using impedance based features“, Adv. Radio Sci., pp. 93-97, 2017.

    Google Scholar 

  12. P. Jansen, et al., „Impedance spectra classification for determining the state of charge on a lithium iron phosphate cell using a support vector machine“, Adv. Radio Sci., pp. 127-132, 2015.

    Article  Google Scholar 

  13. B. Stiaszny, et al., „Electrochemical characterization and post-mortem analysis of aged LiMn2O4–Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion batteries. Part I: Cycle aging“, J. Power Sources, pp. 439-450, 2014.

    Google Scholar 

  14. R. Hausbrand, et al., „Fundamental degradation mechanisms of layered oxide Li-ion battery cath-ode materials: Methodology, insights and novel approaches“, Mater. Sci. Eng. B, pp. 3-25, 2015.

    Google Scholar 

  15. M. Doyle, et al., „Modeling of Galvanostatic Charge and Discharge of the Lithi-um/Polymer/Insertion Cell“, J. Electrochem. Soc., pp. 1526-1533, 1993.

    Article  Google Scholar 

  16. R. Srinivasan, et al., „Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells“, Electrochim. Acta, pp. 6189-6204, 2011.

    Google Scholar 

  17. N. S. Spinner, et al., „Expanding the Operational Limits of the Single-Point Impedance Diagnostic for Internal Temperature Monitoring of Lithium-ion Batteries“, Electrochim. Acta, pp. 488-493, 2015.

    Google Scholar 

  18. R. R. Richardson, et al., „Battery internal temperature estimation by combined impedance and surface temperature measurement“, J. Power Sources, pp. 254-261, 2014.

    Article  Google Scholar 

  19. L.H.J. Raijmakers, et al., „Sensorless battery temperature measurements based on electrochemical impedance spectroscopy“, J. Power Sources, pp. 539-544, 2014.

    Article  Google Scholar 

  20. J. Zhu, et al., „A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement“, J. Power Sources, pp. 990-1004, 2015.

    Google Scholar 

  21. I. O. f. Standardisation, Guide to the Expression of Uncertainty in Measurements, Genf, Schweiz: DIN/Beuth-Verlag, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, J.P., Hammerschmidt, T. (2018). Impedanzsensorik für Batteriezellen in Elektro-Fahrzeugen. In: Tille, T. (eds) Automobil-Sensorik 2. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56310-6_5

Download citation

Publish with us

Policies and ethics