Skip to main content

Integrierte Zell-Sensorik in Lithium-Ionen-Akkus für Elektro- und Hybridfahrzeuge

  • Chapter
Automobil-Sensorik

Kurzfassung

Die Zustandsüberwachung von Traktionsbatterien beschränkt sich aktuell auf Strom, Spannung und eine Oberflächentemperatur. Durch den Einsatz von zellinterner Sensorik können Ziele wie Sicherheit, Leistung und Lebensdauer adressiert werden. Hierzu werden Anwendungsszenarien für verschiedene Sensoren und Messgrößen dargestellt und die Anforderungen ausgearbeitet. Am Beispiel der Messgrößen Druck und Temperatur werden erste Messungen diskutiert, Potentiale aufgezeigt und die Herausforderungen für eine Übertragung in die Serie anschaulich dargestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. W. Bemhart, “The Lithium-Ion Battery Value Chain - Status, Trends and Implications,” in Lithium-Ion Batteries - Advances and Applications, Elsevier, 2014, pp. 553–566.

    Google Scholar 

  2. L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, “A review on the key issues for lithiumion battery management in electric vehicles,” Journal of Power Sources, vol. 226, p. 272–288, 2013.

    Article  Google Scholar 

  3. saft batteries, „Press releases | Saft,“ [Online]. Available: http://www.saftbatteries.com/force_download/cp_53-09_en.pdf. [Accessed 19 11 2015].

  4. K. Xu, “Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries,” Chem. Rev., vol. 104, 2004.

    Google Scholar 

  5. G. J. Methlie, „Electric Current Producing Cell“. USA Patent 3,145, 687, 10 Dezember 1968.

    Google Scholar 

  6. T. Kawamura, A. Kimura, M. Egashira, S. Okada and J. Yamaki, “Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells,” Journal of Power Sources, no. 104, p. 260–264, 2001.

    Google Scholar 

  7. S. E. Sloop, J. K. Pugh, S. Wang, J. B. Kerr and K. Kinoshita, “Chemical Reactivits of PF5 and LiPF6 om Ethylene Carbonate/Dimethyl Carbonate Solutions,” Electrochemical and Solid-State Letters, no. 4, 2001.

    Google Scholar 

  8. A. F. Holleman, E. Wiberg and W. N., Lehrbuch der Anorganischen Chemie, Gruyter Verlag, 2007.

    Google Scholar 

  9. N. Damay, C. Forgez, M. Bichat and G. Friedrich, “Thermal modeling of large prismatic LiFePO4/graphite battery. Coupled thermal and heat generation models for characterization and simulation.,” Journal of Power Sources, no. 283, p. 37–45, 2015.

    Google Scholar 

  10. G. Kim, A. Pesaran and R. Spotnitz, “A three-dimensional thermal abuse model for lithium-ion cells,” Journal of Power Sources, no. 170, p. 476–489, 2007.

    Article  Google Scholar 

  11. W. Zhao, G. Luo and C. Wang, “Modeling Internal Shorting Process in Large-Format Li-Ion Cells,” Journal of the Electrochemical Society, no. 162, pp. A1352-A 1364, 2015.

    Google Scholar 

  12. M. S. K. Mutyala, J. Zhao, J. Li, H. Pan, C. Yuan and X. Li, “In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples,” Journal of Power Sources, no. 260, p. 43–49, 2014.

    Google Scholar 

  13. N. Martiny, A. Rheinfeld, J. Geder, Y. Wang, W. Kraus and A. Jossen, “Development of an All Kapton-Based Thin-Film,” Sensors Journal, IEEE, no. 14, pp. 3377-3384, 10 10 2014.

    Article  Google Scholar 

  14. C.-Y. Lee, H.-C. Peng, S.-J. Lee, I.-M. Hung, C.-T. Hsieh, C.-S. Chiou and Y.-M. Chang, “A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries,” sensors, no. 15, pp. 11485-11498, 2015.

    Article  Google Scholar 

  15. M. S. K. Mutyala, J. Zhao, J. Li, H. Pan, C. Yuan and X. Li, “In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors,” Journal of Power Sources, no. 260, p. 43–49, 2014.

    Article  Google Scholar 

  16. G. Zhang, L. Cao, S. Ge, C. Wang, C. E. Shaffer and C. D. Rahn, “In Situ Measurement of Radial Temperature Distributions in Cylindrical Li-Ion Cells,” Journal of The Electrochemical Society, no. 161, pp. A1499-A 1507, 2014.

    Article  Google Scholar 

  17. G. Yang, C. Leitao, Y. Li, J. Pinto and X. Jiang, “Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage,” Measurement, no. 46, p. 3166–3172, 2013.

    Article  Google Scholar 

  18. M. Dolle, F. Orsini, A. S. Gozdz and J. Tarascon, “Development of Reliable Three- Electrode Impedance Measurements in Plastic Li-Ion Batteries,” Journal of the Electrochemical Society, no. 148, pp. A851-A 857, 2001.

    Google Scholar 

  19. M. Wu, P. J. Chiang and J. Lin, “Electrochemical Investigations on Advanced LithiumIon Batteries by Three-Electrode Measurements,” Journal of the Electrochemical Society, no. 152, pp. A47-A 52, 2005.

    Article  Google Scholar 

  20. D. P. Abraham, S. D. Poppen, A. N. Jansen, J. Liu, Dees and D. W., “Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells,” Electrochimica Acta, no. 49, p. 4763–4775, 2004.

    Article  Google Scholar 

  21. M. Smart, B. Ratnakumar, L. Whitcanacka, K. Chin, M. Rodriguez and S. Surampudi, “Performance Characteristics of Lithium Ion Cells at Low Temperatures,” Aerospace and Electronic Systems Magazine, IEEE, 2002.

    Google Scholar 

  22. D. W. Dees, A. N. Jansen and D. P. Abraham, “Theoretical examination of reference electrodes for lithium-ion cells,” Journal of Power Sources, no. 174, p. 1001–1006, 2007.

    Article  Google Scholar 

  23. M. Ender, A. Weber and E. Ivers-Tiffee, “Analysis of Three-Electrode Setups for AC-Impedance Measurements on Lithium-Ion Cells by FEM simulations,” Journal of The Electrochemical Society, no. 159, pp. A128-A 136, 2011.

    Google Scholar 

  24. J. Vetter, P. Novák, M. Wagner, C. Veit, K.-C. Möller, J. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler and A. Hammouche, “Ageing mechanisms in lithium-ion batteries,” Journal of Power Sources, no. 147, p. 269–281, 2005.

    Article  Google Scholar 

  25. R. Spotnitz and J. Franklin, “Abuse behavior of high-power lithium-ion cells,” Journal of Power Sources, no. 113, pp. 81–100, 2002.

    Article  Google Scholar 

  26. J. N. Reimers and J. R. Dahn, “Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2,” Journal of the Electrochemical Society, vol. 139, no. 8, pp. 2091–2097, 1992.

    Article  Google Scholar 

  27. J. Kim and H. Chun, “The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7V,” Electrochimica Acta, no. 49, p. 937–944, 2004.

    Article  Google Scholar 

  28. J. Dahn and T. Zheng, “Applications of Carbon in Lithium-Ion Batteries,” in Carbon Materials for Advanced Technologies, Pergamon, USA, 1999.

    Google Scholar 

  29. J. Arrebola, A. Caballero, J. Gómez-Cámer, L. Hernán, J. Morales and L. Sánchez, “Combining 5 V LiNi0.5Mn1.5O4 spinel and Si nanoparticles for advanced Li-ion batteries,” Electrochemistry Communications, no. 11, p. 1061–1064, 2009.

    Article  Google Scholar 

  30. V Sethuraman, N. Van Winkle, D. Abraham, A. Bower and P. Guduru, “Real-time stress measurements in lithium-ion battery negative-electrodes,” Journal of Power Sources, no. 206, p. 334–342, 2012.

    Article  Google Scholar 

  31. S. P. Nadimpalli, V. A. Sethuraman, D. P. Abraham, A. F. Bower and P. R. Guduru, “Stress Evolution in Lithium-Ion Composite Electrodes during Electrochemical Cycling and Resulting Internal Pressures on the Cell Casing,” Journal of The Electrochemical Society, no. 162, pp. A2656-A 2663, 2015.

    Article  Google Scholar 

  32. P. Leung, C. Moreno, I. Masters, S. Hazra, B. Conde, M. Mohamed, R. Dashwood and R. Bhagat, “Real-time displacement and strain mappings of lithium-ion batteries using three-dimensional digital image correlation,” Journal of Power Sources, no. 271, p. 82–86, 2014.

    Article  Google Scholar 

  33. J. H. Lee, H. M. Lee and S. Ahn, “Battery dimensional changes occurring during charge/discharge cycles—thin rectangular lithium ion and polymer cells,” Journal of Power Sources, no. 119-121, p. 833–837, 2003.

    Article  Google Scholar 

  34. K. Oh, J. B. Siegel, L. Secondo, S. U. Kim, N. A. Samad, J. Qin, D. Anderson, K. Garikipati, A. Knobloch, B. I. Epureanu, C. W. Monroe and A. Stefanopoulou, “Rate dependence of swelling in lithium-ion cells,” Journal of Power Sources, no. 267, p. 197–202, 2014.

    Article  Google Scholar 

  35. X. Wang, Y. Sone, G. Segami, H. Naito, X. Yamada and K. Kibe, “Understanding Volume Change in Lithium-Ion Cells during Charging and Discharging Using In Situ Measurements,” Journal of the Electrochemical Society, no. 154, pp. A14-A 21, 2007.

    Google Scholar 

  36. S. Mohan, Y Kim, J. B. Siegel, N. A. Samad and A. G. Stefanopoulou, “A Phenomenological Model of Bulk Force in a Li-Ion Battery Pack and Its Application to State of Charge Estimation,” Journal of the Electrochemical Society, no. 161, pp. A2222-A 2231, 2014.

    Google Scholar 

  37. J. Cannarella and C. B. Arnold, “State of health and charge measurements in lithiumion batteries using mechanical stress,” Journal of Power Sources, no. 269, pp. 7–14, 2014.

    Article  Google Scholar 

  38. L. W. Sommer, A. Raghavan, P. Kiesel, B. Saha, J. Schwartz, A. Lochbaum, A. Ganguli, C. Bae and M. Alamgir, “Monitoring of Intercalation Stages in LithiumIon Cells over Charge-Discharge Cycles with Fiber Optic Sensors,” Journal of the Electrochemical Society, no. 162, pp. A2664-A 2669, 2015.

    Article  Google Scholar 

  39. J. Cannarella and C. B. Arnold, “Stress evolution and capacity fade in constrained lithium-ion pouch cells,” Journal of Power Sources, no. 245, pp. 745–751, 2014.

    Article  Google Scholar 

  40. C. Peabody and C. B. Arnold, “The role of mechanically induced separator creep in lithium-ion battery capacity fade,” Journal of Power Sources, no. 196, p. 8147-8153, 2011.

    Article  Google Scholar 

  41. B. Bitzer and A. Gruhle, “A new method for detecting lithium plating by measuring the cell thickness,” Journal of Power Sources, no. 262, p. 297–302, 2014.

    Article  Google Scholar 

  42. J. P. Schmidt, T. Chrobak, M. Ender, J. Illig, D. Klotz and E. Ivers-Tiffee, “Studies on LiFePO4 as cathode material using impedance spectroscopy,” Journal of Power Sources, no. 196, p. 5342–5348, 2011.

    Article  Google Scholar 

  43. J. Illig, J. Schmidt, M. Weiss, A. Weber and E. Ivers-Tiffee, “Understanding the impedance spectrum of 18650 LiFePO4-cells,” Journal of Power Sources, no. 239, p. 670-679, 2013.

    Google Scholar 

  44. R. Srinivasan, B. G. Carkhuff, M. H. Butler and A. C. Baisden, “Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells,” Electrochimica Acta, no. 56, pp. 6198–6204, 2011.

    Article  Google Scholar 

  45. J. P. Schmidt, S. Arnold, S. Loges, D. Werner, T. Wetzel and E. Ivers-Tiffee, “Measurement of the internal cell temperature via impedance: Evaluation and application of a new method,” Journal of Power Sources, no. 243, pp. 110–117, 2013.

    Google Scholar 

  46. L. Raijmakers, D. Danilov, J. van Lammeren, M. Lammers and P. Notten, “Sensorless battery temperature measurements based on electrochemical impedance spectroscopy,” Journal of Power Sources, no. 247, pp. 539–544, 2014.

    Google Scholar 

  47. J. Zhu, Z. Sun, X. Wei and H. Dai, “A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement,” Journal of Power Sources, no. 274, p. 990–1004, 2015.

    Google Scholar 

  48. A. J. Reinhold Koch, “Impedance Spectroscopy for Battery Monitoring with Switched Mode Amplifiers,” 2014 16th International Power Electronics and Motion Control Conference and Exposition (PEMC), 2014.

    Google Scholar 

  49. V Roscher, M. Schneider, P. Durdaut, N. Sassano, S. Pereguda, E. Mense and K.-R. Riemschneider, “Synchronisation using wireless trigger-broadcast for impedance spectroscopy of battery cells,” Sensors Applications Symposium (SAS), 2015 IEEE, pp. 1-6, 2015.

    Google Scholar 

  50. D. Howey, P. Mitcheson, V. Yufit, G. Offer and N. Brandon, “On-line measurement of battery impedance using motor controller excitation,” Vehicular Technology, IEEE Transactions on, no. 63, pp. 2557–2566, 2014.

    Article  Google Scholar 

  51. A. Otto, S. Rzepka, T. Mager, B. Michel, C. Lanciotti, T Günther and O. Kanoun, “Battery Management Network for Fully Electrical Vehicles Featuring Smart Systems at Cell and Pack Level,” in Advanced Microsystems for Automotive Applications 2012, Springer Berlin Heidelberg, 2012, pp. 3–14.

    Google Scholar 

  52. N. S. Spinner, C. T Love, S. L. Rose-Pehrsson and S. G. Tuttle, “Expanding the Operational Limits of the Single-Point Impedance Diagnostic for Internal Temperature Monitoring of Lithium-ion Batteries,” Electrochimica Acta, no. 174, p. 488–493, 2015.

    Article  Google Scholar 

  53. V Lorentz, M. Wenger, J. Grosch, M. Giegerich, M. Jank, M. Marz and L. Frey, “Novel Cost-Efficient Contactless Distributed Monitoring Concept for Smart Battery Cells,” Industrial Electronics (ISIE), 2012 IEEE International Symposium on, pp. 1342-1347, 2012.

    Google Scholar 

  54. F Baronti, G. Fantechi, R. Roncella and R. Saletti, “Intelligent Cell Gauge for a Hierarchical Battery Management System,” Transportation Electrification Conference and Expo (ITEC), 2012 IEEE, pp. 1-5, 2012.

    Google Scholar 

  55. J. Zhou and P. H. L. Notten, “Development of Reliable Lithium Microreference Electrodes for Long-Term In Situ Studies of Lithium-Based Battery Systems,” Journal of the Electrochemical Society, no. 151, pp. A2173-A 2179, 2004.

    Google Scholar 

  56. J. P. Schmidt, H. Y Tran, J. Richter, E. Ivers-Tiffee and M. Wohlfahrt-Mehrens, “Analysis and prediction of the open circuit potential of lithium-ion cells,” Journal of Power Sources, no. 239, p. 696–704, 2013.

    Google Scholar 

  57. K. Honkura, H. Honbo, Y. Koishikawa and T. Horiba, “State Analysis of LithiumIon Batteries Using Discharge Curves,” ECS Transactions, no. 13, pp. 61–73, 2008.

    Google Scholar 

  58. R. Koch and A. Jossen, “Impedance Spectroscopy for Battery Monitoring,” 2014 16th International Power Electronics andMotion Control Conference and Exposition (PEMC), 2014.

    Google Scholar 

  59. R. R. Richardson, P. T. Ireland and D. A. Howey, “Battery internal temperature estimation by combined impedance and surface temperature measurement,” Journal of Power Sources, no. 265, pp. 254–261, 2014.

    Google Scholar 

  60. C. T. Love, M. B. Virji, R. E. Rocheleau and K. E. Swider-Lyons, “State-of-health monitoring of 18650 4S packs with a single-point impedance diagnostic,” Journal of Power Sources, no. 266, p. 512-519, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, J., Dandl, S., Gentschev, AC., Elian, K., Rose, M. (2016). Integrierte Zell-Sensorik in Lithium-Ionen-Akkus für Elektro- und Hybridfahrzeuge. In: Tille, T. (eds) Automobil-Sensorik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48944-4_1

Download citation

Publish with us

Policies and ethics