Skip to main content

Microbial Hydrocarbon Degradation at Coal Gasification Plants

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Almost every bigger city harbors a former coal gasification plant, where sometimes huge amounts of contaminants such as tar oil have leaked into the subsurface. This continuous release of monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene (BTEX), as well as polycyclic aromatic hydrocarbons (PAH) such as naphthalene has resulted in considerable contaminant plumes. After decades of deposition, contaminant dissolution from the source is often in equilibrium with biodegradation processes. However, owing to slow dissolution and limited attenuation potentials, these sites are expected to remain impacted for hundreds and thousands of years.

Today, novel means allow assessing biodegradation at former gasification sites by, e.g., metabolite analysis, fingerprinting of substrate spectra, or mass balances based on electron acceptor depletion. Biodegradation can even be quantified by stable isotope fractionation analysis. Also, knowledge on aerobic microbial hydrocarbon-degrading microorganisms is quite elaborate, which helps to understand degradation in unsaturated zones. However, these heavily contaminated aquifers usually turn anoxic, and apart from the degradation of toluene, ethylbenzene, and methylnaphthalene, the biochemistry of most anaerobic degradation pathways is still elusive. Hence, the controls of in situ biodegradation processes are still poorly understood. Recently, it has become apparent that the spatial separation of electron acceptors and contaminants in contaminant plumes caused by limited mixing in aquifers may be one of the most important factors limiting biodegradation in these systems. Electron acceptors are depleted in the center of plumes, restricting degradation activities to the fringe zones, where electron acceptors and contaminants meet in steep geochemical counter-gradients.

Microbial communities in water and sediment samples from gasification plants generally exhibit abundance orders of magnitude higher than in uncontaminated references. At the same time, total community composition can be similarly diverse, albeit significant structural distinctions have been reported for the populations found in strongly or less impacted zones. The occurrence of both typical and uncultured degradation key-players seems to be correlated with zones of contamination and the prevailing biogeochemical conditions. Especially in degradation “hot-spots” at plume fringes, the abundance of specific hydrocarbon degraders can be surprisingly high. We highlight that substantial research efforts still need to be devoted to a better understanding of key aromatics and hydrocarbon degraders under iron- and sulfate-reducing, and methanogenic conditions, as well as to the biogeochemical and ecological controls of their activity in contaminated subsurface systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfreider A, Krossbacher M, Psenner R (1997) Groundwater samples do not reflect bacterial densities and activity in subsurface systems. Water Res 31: 832–840.

    Article  CAS  Google Scholar 

  • Andreoni V, Gianfreda L (2007) Bioremediation and monitoring of aromatic-polluted habitats. Appl Microbiol Biotechnol 76: 287–308.

    Article  PubMed  CAS  Google Scholar 

  • Anneser B, Einsiedl F, Meckenstock RU, Richters L, Wisotzky F, Griebler C (2008a) High-resolution monitoring of biogeochemical gradients in a tar oil-contaminated aquifer. Appl Geochem 23: 1715–1730.

    Article  CAS  Google Scholar 

  • Anneser B, Einsiedl F, Stichler W, Pilloni G, Bayer A, Lueders T, Griebler C (2009) Small-scale biogeochemical gradients in a tar oil-contaminated aquifer – match and divergence of groundwater vs. sediment data. (submitted).

    Google Scholar 

  • Annweiler E, Materna A, Safinowski M, Kappler A, Richnow HH, Michaelis W, Meckenstock RU (2000a) Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66: 5329–5333.

    Article  PubMed  CAS  Google Scholar 

  • Annweiler E, Michaelis W, Meckenstock RU (2001) Anaerobic cometabolic conversion of benzothiophene by a sulfate-reducing enrichment culture and in a tar-oil-contaminated aquifer. Appl Environ Microbiol 67: 5077–5083.

    Article  PubMed  CAS  Google Scholar 

  • Annweiler E, Michaelis W, Meckenstock RU (2002) Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetraline indicate a new metabolic pathway. Appl Environ Microbiol 68: 852–858.

    Article  PubMed  CAS  Google Scholar 

  • Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, et al. (2000b) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol 66: 518–523.

    Article  PubMed  CAS  Google Scholar 

  • Bakermans C, Madsen EL (2002) Diversity of 16S rDNA and naphthalene dioxygenase genes from coal-tar-waste-contaminated aquifer waters. Microb Ecol 44: 95–106.

    Article  PubMed  CAS  Google Scholar 

  • Bauer RD, Rolle M, Kürzinger P, Grathwohl P, Meckenstock RU, Griebler C (2009) Two-dimensional flow-through microcosms - Versatile test systems to study biodegradation processes in porous aquifers. J Hydrol 369: 284–295.

    Article  CAS  Google Scholar 

  • Bauer RD, Maloszewski P, Zhang Y, Meckenstock RU, Griebler C (2008a) Mixing-controlled biodegradation in a toluene plume – results from two-dimensional laboratory experiments. J Contam Hydrol 96: 150–168.

    Article  PubMed  CAS  Google Scholar 

  • Beller HR (2000) Metabolic indicators for detecting in situ anaerobic alkylbenzene degradation. Biodegradation 11: 125–139.

    Article  PubMed  CAS  Google Scholar 

  • Beller HR, Kane SR, Legler TC, Alvarez PJ (2002) A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol 36: 3977–3984.

    Article  PubMed  CAS  Google Scholar 

  • Boll M, Fuchs G, Heider J (2002) Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol 6: 604–611.

    Article  PubMed  CAS  Google Scholar 

  • Borden RC, Bedient PB (1986) Transport of dissolved hydrocarbons influenced by reaeration and oxygen limited biodegradation: 1. Theoretical development. Water Resour Res 22: 1973–1982.

    Article  CAS  Google Scholar 

  • Bouwer EJ, Zhang WX, Wilson LP, Durant ND (1997) Biotreatment of PAH-contaminated soils/sediments. In Bioremediation of Surface and Subsurface Contamination. New York: New York Academy of Sciences, pp. 103–117.

    Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic hydrocarbons. Biodegradation 3: 351–368.

    Article  CAS  Google Scholar 

  • Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64: 437–446.

    Article  PubMed  CAS  Google Scholar 

  • Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, et al. (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16: 659–718.

    Article  CAS  Google Scholar 

  • Cirpka OA, Frind EO, Helmig R (1999) Numerical simulation of biodegradation controlled by transverse mixing. J Contam Hydrol 40: 159–182.

    Article  CAS  Google Scholar 

  • Cozzarelli IM, Herman JS, Baedecker MJ, Fischer JM (1999) Geochemical heterogeneity of a gasoline-contaminated aquifer. J Contam Hydrol 40: 261–284.

    Article  CAS  Google Scholar 

  • Davidova IA, Gieg LM, Duncan KE, Suflita JM (2007) Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment. ISME J 1: 436–442.

    Article  PubMed  CAS  Google Scholar 

  • Davis GB, Barber C, Power TR, Thierrin J, Patterson BM, Rayner JL, Wu QL (1999) The variability and intrinsic remediation of a BTEX plume in anaerobic sulfate-rich groundwater. J Contam Hydrol 36: 265–290.

    Article  CAS  Google Scholar 

  • Dolfing J, Zeyer J, Binder-Eicher P, Schwarzenbach RP (1990) Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch Microbiol 154: 336–341.

    Article  PubMed  CAS  Google Scholar 

  • Durant LPW, D’Adamo PC, Bouwer EJ (1999) Aromatic hydrocarbon biodegradation with mixtures of O-2 and NO3-as electron acceptors. Environ Eng Sci 16: 487–500.

    Article  CAS  Google Scholar 

  • Durant ND, Wilson LP, Bouwer EJ (1995) Microcosm studies of subsurface PAH-degrading bacteria from a former manufactured gas plant. J Contam Hydrol 17: 213–237.

    Article  CAS  Google Scholar 

  • Dyreborg S, Arvin E, Broholm K (1997) Biodegradation of NSO-compounds under different redox-conditions.  J Contam Hydrol 25: 177–197.

    Article  CAS  Google Scholar 

  • Eckert P, Appelo CAJ (2002) Hydrogeochemical modeling of enhanced benzene, toluene, ethylbenzene, xylene (BTEX) remediation with nitrate. Water Resour Res 38: 1–11.

    Article  Google Scholar 

  • Elshahed MS, Gieg LM, McInerney MJ, Suflita JM (2001) Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments. Environ Sci Technol 35: 682–689.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AS, Huang WE, Lawson KA, Doherty R, Gibert O, Dickson KW, et al. (2007) Microbial analysis of soil and groundwater from a gasworks site and comparison with a sequenced biological reactive barrier remediation process. J Appl Microbiol 102: 1227–1238.

    Article  PubMed  CAS  Google Scholar 

  • Fetzner S (1998) Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl Microbiol Biotechnol 49: 237–250.

    Article  CAS  Google Scholar 

  • Fischer A, Bauer J, Meckenstock RU, Stichler W, Griebler C, Maloszewski P, et al. (2006) A multitracer test proving the reliability of Rayleigh equation-based approach for assessing biodegradation in a BTEX contaminated aquifer. Environ Sci Technol 40: 4245–4252.

    Article  PubMed  CAS  Google Scholar 

  • Galushko A, Minz D, Schink B, Widdel F (1999) Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol 1: 415–420.

    Article  PubMed  CAS  Google Scholar 

  • Galvao TC, Mohn WW, de Lorenzo V (2005) Exploring the microbial biodegradation and biotransformation gene pool. Trends Biotechnol 23: 497–506.

    Article  PubMed  CAS  Google Scholar 

  • Gieg LM, Suflita JM (2002) Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ Sci Technol 36: 3755–3762.

    Article  PubMed  CAS  Google Scholar 

  • Griebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Freshwater Biol 54: 649–677.

    Article  Google Scholar 

  • Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU (2004) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38: 617–631.

    Article  PubMed  CAS  Google Scholar 

  • Ham PAS, Schotting RJ, Prommer H, Davis GB (2004) Effects of hydrodynamic dispersion on plume lengths for instantaneous biomolecular reactions. Adv Water Res 27: 803–813.

    Article  CAS  Google Scholar 

  • Heider J (2007) Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 11: 188–194.

    Article  PubMed  CAS  Google Scholar 

  • Herrick JB, Stuart-Keil KG, Ghiorse WC, Madsen EL (1997) Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl Environ Microbiol 63: 2330–2337.

    PubMed  CAS  Google Scholar 

  • Jahn MK, Haderlein SB, Meckenstock RU (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl Environ Microbiol 71: 3355–3358.

    Article  PubMed  CAS  Google Scholar 

  • Jeon CO, Park W, Padmanabhan P, DeRito C, Snape JR, Madsen EL (2003) Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci USA 100: 13591–13596.

    Article  PubMed  CAS  Google Scholar 

  • Johansen SS, Licht D, Arvin E, Mosbaek H, Hansen AB (1997) Metabolic pathways of quinoline, indole and their methylated analogs by Desulfobacterium indolicum (DSM 3383). Appl Microbiol Biotechnol 47: 292–300.

    Article  CAS  Google Scholar 

  • Klenk ID, Grathwohl P (2002) Transverse vertical dispersion in groundwater and the capillary fringe. J Contam Hydrol 58: 111–128.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn EP, Zeyer J, Eicher P, Schwarzenbach RP (1988) Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl Environ Microbiol 54: 490–496.

    PubMed  CAS  Google Scholar 

  • Kunapuli U, Griebler C, Beller HR, Meckenstock RU (2008) Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environ Microbiol 10: 1703–1712.

    Article  PubMed  CAS  Google Scholar 

  • Kunapuli U, Lueders T, Meckenstock RU (2007) The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J 1: 643–653.

    Article  PubMed  CAS  Google Scholar 

  • Lerner DN, Thornton SF, Spence MJ, Banwart SA, Bottrell S, Higgo JJ, et al. (2000) Ineffective natural attenuation of degradable organic compounds in a phenol-contaminated aquifer. Ground Water 38: 922–928.

    Article  CAS  Google Scholar 

  • Lewandowski G, Mortimer G (2004) Estimation of anaerobic biodegradation rate constants at MGP sites. Ground Water 42: 433–437.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Pignatello JJ, Smets BF, Grasso D, Monserrate E (2005) Bench-scale evaluation of in situ bioremediation strategies for soil at a former manufactured gas plant site. Environ Toxicol Chem 24: 741–749.

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56: 1858–1864.

    PubMed  CAS  Google Scholar 

  • Lundstedt S, Haglund P, Oberg L (2003) Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an aged gasworks soil. Environ Toxicol Chem 22: 1413–1420.

    Article  PubMed  CAS  Google Scholar 

  • Madsen EL (2006) The use of stable isotope probing techniques in bioreactor and field studies on bioremediation. Curr Opin Biotechnol 17: 92–97.

    Article  PubMed  CAS  Google Scholar 

  • Mak KS, Griebler C, Meckenstock RU, Liedl R, Peter A (2006) Combined application of conservative transport modelling and compound-specific carbon isotope analyses to assess in situ attenuation of benzene, toluene, and o-xylene. J Contam Hydrol 88: 306–320.

    Article  PubMed  CAS  Google Scholar 

  • Martus P, Puttmann W (2003) Formation of alkylated aromatic acids in groundwater by anaerobic degradation of alkylbenzenes. Sci Total Environ 307: 19–33.

    Article  PubMed  CAS  Google Scholar 

  • Meckenstock RU (1999) Fermentative toluene degradation in anaerobic defined syntrophic cocultures. FEMS Microbiol Lett 177: 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B (2000) Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66: 2743–2747.

    Article  PubMed  CAS  Google Scholar 

  • Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004c) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. J Contam Hydrol 75: 215–255.

    Article  PubMed  CAS  Google Scholar 

  • Meckenstock RU, Safinowski M, Griebler C (2004b) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 49: 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Meckenstock RU, Warthmann RI, Schafer W (2004a) Inhibition of anaerobic microbial o-xylene degradation by toluene in sulfidogenic sediment columns and pure cultures. FEMS Microbiol Ecol 47: 381–386.

    Article  PubMed  CAS  Google Scholar 

  • Morasch B, Richnow HH, Vieth A, Schink B, Meckenstock RU (2004b) Stable isotope fractionation caused by glycyl radical enzymes during bacterial degradation of aromatic compounds. Appl Environ Microbiol 70: 2935–2940.

    Article  PubMed  CAS  Google Scholar 

  • Morasch B, Schink B, Tebbe CC, Meckenstock RU (2004a) Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum. Arch Microbiol 181: 407–417.

    Article  PubMed  CAS  Google Scholar 

  • Mundt M, Althoff K, Dott W, Hollender J (2003) Microbial degradation of tar oil compounds under different redox conditions. Acta Hydrochim Hydrobiol 31: 204–212.

    Article  CAS  Google Scholar 

  • Ohlenbusch G, Zwiener C, Meckenstock RU, Frimmel FH (2002) Identification and quantification of polar naphthalene derivatives in contaminated groundwater of a former gas plant site by liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 967: 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Phelps CD, Battistelli J, Young LY (2002) Metabolic biomarkers for monitoring anaerobic naphthalene biodegradation in situ. Environ Microbiol 4: 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Prommer H, Tuxen N, Bjerg PL (2006) Fringe-controlled natural attenuation of phenoxy acids in a landfill plume: integration of field-scale processes by reactive transport modeling. Environ Sci Technol 40: 4732–4738.

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Nordhaus R, Ludwig W, Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59: 1444–1451.

    PubMed  CAS  Google Scholar 

  • Rees HC, Oswald SE, Banwart SA, Pickup RW, Lerner DN (2007) Biodegradation processes in a laboratory-scale groundwater contaminant plume assessed by fluorescence imaging and microbial analysis. Appl Environ Microbiol 73: 3865–3876.

    Article  PubMed  CAS  Google Scholar 

  • Reineke AK, Goen T, Preiss A, Hollender J (2007) Quinoline and derivatives at a tar oil contaminated site: hydroxylated products as indicator for natural attenuation? Environ Sci Technol 41: 5314–5322.

    Article  PubMed  CAS  Google Scholar 

  • Reusser DE, Istok JD, Beller HR, Field JA (2002) In situ transformation of deuterated toluene and xylene to benzylsuccinic acid analogues in BTEX-contaminated aquifers. Environ Sci Technol 36: 4127–4134.

    Article  PubMed  CAS  Google Scholar 

  • Rhee S-K, Lee MN, Yoon J-H, Park Y-H, Bae H-S, Lee S-T (1997) Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium. Appl Environ Microbiol 63: 2578–2585.

    PubMed  CAS  Google Scholar 

  • Richnow HH, Annweiler E, Michaelis W, Meckenstock RU (2003) Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation. J Contam Hydrol 65: 101–120.

    Article  PubMed  CAS  Google Scholar 

  • Rogers SW, Ong SK, Moorman TB (2007) Mineralization of PAHs in coal-tar impacted aquifer sediments and associated microbial community structure investigated with FISH. Chemosphere 69: 1563–1573.

    Article  PubMed  CAS  Google Scholar 

  • Ronen DM, Magaritz M, Gvirtzman H, Garner W (1987) Microscale chemical heterogeneity in groundwater. J Hydrol 92: 173–178.

    Article  CAS  Google Scholar 

  • Safinowski M, Griebler C, Meckenstock RU (2006) Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies. Environ Sci Technol 40: 4165–4173.

    Article  PubMed  CAS  Google Scholar 

  • Safinowski M, Meckenstock RU (2004) Enzyme reactions in anaerobic 2-methylnaphthalene degradation by the sulfate-reducing enrichment culture N 47. FEMS Microbiol Lett 240: 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Safinowski M, Meckenstock RU (2006) Methylation is the initial reaction in anaerobic naphthalene degradation by a sulphate-reducing enrichment culture. Environ Microbiol 8: 347–352.

    Article  PubMed  CAS  Google Scholar 

  • Saponaro S, Bonomo L, Petruzzelli G, Romele L, Barbafieri M (2002) Polycyclic aromatic hydrocarbons (PAHs) slurry phase bioremediation of a manufacturing gas plant (MGP) site aged soil. Water Air Soil Pollut 135: 219–236.

    Article  CAS  Google Scholar 

  • Saraswathy A, Hallberg R (2002) Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiol Lett 210: 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects and future challenges. Anal Bioanal Chem 378: 283–300.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt R, Langguth H-R, Püttmann W (1998) Abbau aromatischer Kohlenwasserstoffe und Metabolitenbildung im Grundwasserleiter eines ehemaligen Gaswerkstandorts. Grundwasser 3: 78–86.

    Article  CAS  Google Scholar 

  • Selesi D, Meckenstock RU (2009) Anaerobic degradation of the aromatic hydrocarbon biphenyl by a sulfate-reducing enrichment culture. FEMS Microbiol Ecol 68: 86–93.

    Article  PubMed  CAS  Google Scholar 

  • Spormann AM, Widdel F (2000) Metabolism of alkyl-benzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11: 85–105.

    Article  PubMed  CAS  Google Scholar 

  • Tchelet R, Meckenstock R, Steinle P, van der Meer JR (1999) Population dynamics of an introduced bacterium degrading chlorinated benzenes in a soil column and in sewage sludge. Biodegradation 10: 113–125.

    Article  PubMed  CAS  Google Scholar 

  • Thornton SF, Quigley S, Spence MJ, Banwart SA, Bottrell S, Lerner DN (2001) Processes controlling the distribution and natural attenuation of dissolved phenolic compounds in a deep sandstone aquifer. J Contam Hydrol 53: 233–267.

    Article  PubMed  CAS  Google Scholar 

  • Thullner M, Schroth MH, Zeyer J, Kinzelbach W (2004) Modeling of a microbial growth experiment with bioclogging in a two-dimensional saturated porous media flow field. J Contam Hydrol 70: 37–62.

    Article  PubMed  CAS  Google Scholar 

  • van Breukelen BM, Griffioen J (2004) Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4 +, and CH4 oxidation. J Contam Hydrol 73: 181–205.

    Article  PubMed  CAS  Google Scholar 

  • Weiss JV, Cozzarelli IM (2008) Biodegradation in contaminated aquifers: incorporating microbial/molecular methods. Ground Water 46: 305–322.

    Article  PubMed  CAS  Google Scholar 

  • Wiedemeier TH, Rifai HS, Newell CJ, Wilson JT (1999) Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. New York: Wiley.

    Book  Google Scholar 

  • Wilson MS, Herrick JB, Jeon CO, Hinman DE, Madsen EL (2003) Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments. Appl Environ Microbiol 69: 2172–2181.

    Article  PubMed  CAS  Google Scholar 

  • Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74: 792–801.

    Article  PubMed  CAS  Google Scholar 

  • Winderl C, Schaefer S, Lueders T (2007) Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol 9: 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  • Wisotzky F, Eckert P (1997) Sulfat-dominierter BTEX-Abbau im Grundwasser eines ehemaligen Gaswerksstandortes. Grundwasser 1: 11–20.

    Article  Google Scholar 

  • Young LY, Phelps CD (2005) Metabolic biomarkers for monitoring in situ anaerobic hydrocarbon degradation. Environ Health Persp 113: 62–67.

    Article  CAS  Google Scholar 

  • Zamfirescu D, Grathwohl P (2001) Occurrence and attenuation of specific organic compounds in the groundwater plume at a former gasworks site. J Contam Hydrol 53: 407–427.

    Article  PubMed  CAS  Google Scholar 

  • Zhang XM, Sullivan ER, Young LY (2000) Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate-reducing consortium. Biodegradation 11: 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Zhang XM, Young LY (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 63: 4759–4764.

    PubMed  CAS  Google Scholar 

  • Zwank L, Berg M, Elsner M, Schmidt TC, Schwarzenbach RP, Haderlein SB (2005) New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: Application to groundwater contamination by MTBE. Environ Sci Technol 39: 1018–1029.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Meckenstock, R.U., Lueders, T., Griebler, C., Selesi, D. (2010). Microbial Hydrocarbon Degradation at Coal Gasification Plants. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_167

Download citation

Publish with us

Policies and ethics