Skip to main content

Sodium NMR Relaxation: A Versatile Non-invasive Tool for the Monitoring of Phase Transitions and the Estimation of Effective Pore Sizes of Supramolecular Hydrogels

  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 140))

Abstract

Nuclear magnetic resonance (NMR) relaxometry of liquids is a widely used tool to characterize porous media. In particular, 23Na NMR is an especially suitable method when applied to gels and biological tissues. In this work we investigated the thermoreversible melting and gelation processes of supramolecular hydrogels formed by succinamic acid-based amphiphiles (SAn) in a saturated aqueous NaHCO3 solution (sat. aq. NaHCO3 sol.). We could show that it is not only possible to determine the melting points and to monitor the gelation process with 23Na relaxometry, but also to estimate the effective pore size based on the expanded Brownstein-Tarr model. Our findings are in good agreement with data from differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

aq.:

Aqueous

CPMG:

Carr-Purcell-Meiboom-Gill

DSC:

Differential scanning calorimetry

ff:

Freeze-fracture replica

NMR:

Nuclear magnetic resonance

RT:

Room temperature

SAn:

Succinamic acid-based amphiphiles (n: number of carbon atoms in linear alkyl chain)

sat.:

Saturated

SEM:

Scanning electron microscopy

sol.:

Solution

TEM:

Transmission electron microscopy

References

  1. Tromp RH, van der Maarel JR, de Bleijser J, Leyte JC (1991) Counter-ion dynamics in crosslinked poly(styrene sulfonate) systems studied by NMR. Biophys Chem 41:81–100

    Article  CAS  Google Scholar 

  2. Gustavsson H, Lindman B, Bull T (1978) Sodium-23 nuclear magnetic resonance in polyanion solution. Correlation times and quadrupole coupling constants of sodium(+) bound to poly(methacrylic acid). J Am Chem Soc 100:4655–4661

    Article  CAS  Google Scholar 

  3. Levij M, de Bleijser J, Leyte JC (1981) Long-range electric field gradients in charged polymer solutions as probed by sodium-23 relaxation. Chem Phys Lett 83:183–191

    Article  CAS  Google Scholar 

  4. Woessner DE (2001) NMR relaxation of spin-3/2 nuclei: effects of structure, order, and dynamics in aqueous heterogeous systems. Concepts Magn Reson 13:294–325

    Article  CAS  Google Scholar 

  5. Rijniers LA, Magusin PCMM, Huinink HP, Pel L, Kopinga K (2004) Sodium NMR in porous materials. J Magn Reson 167:25–30

    Article  CAS  Google Scholar 

  6. Brownstein KR, Tarr CE (1979) Importance of classical diffusion in NMR studies of water in biological cells. Phys Rev A 19:2446–2453

    Article  Google Scholar 

  7. Valckenborg EMW, Pel L, Hazrati K, Kopinga K, Marchand J (2001) Pore water distribution in mortar during drying as determined by NMR. Mater Struct 34:599–604

    Article  CAS  Google Scholar 

  8. de Loos M, Feringa BL, van Esch JH (2005) Design and application of self-assembled low molecular weight hydrogels. Eur J Org Chem 17:3615–3631

    Google Scholar 

  9. Dastidar P (2008) Supramolecular gelling agents: can they be designed? Chem Soc Rev 37:2699–2715

    Article  CAS  Google Scholar 

  10. Sangeetha NM, Matira U (2005) Supramolecular gels: functions and uses. Chem Soc Rev 34:821–836

    Article  CAS  Google Scholar 

  11. Estroff LA, Hamilton AD (2004) Water gelation by small organic molecules. Chem Rev 104:1201–1217

    Article  CAS  Google Scholar 

  12. The self-assembly behavior and hydrogel formation potential of the succinamic acid-based class of amphiphiles will be reported in detail elsewhere.

    Google Scholar 

  13. Turco G, Donati I, Grassi M, Marchioli G, Lapasin R, Paoletti S (2011) Mechanical spectroscopy and relaxometry on alginate hydrogels: a comparative analysis for structural characterization and network mesh size determination. Biomacromolecules 12:1272–1282

    Article  CAS  Google Scholar 

  14. Wallace M, Adams DJ, Iggo JA (2013) Analyses of the mesh size in a supramolecular hydrogel by PFG-NMR spectroscopy. Soft Matter 9:5483–5491

    Article  CAS  Google Scholar 

  15. Höhne G, Hemminger W, Flammersheim HJ (1996) Differential scanning calorimetry. Springer, Berlin

    Book  Google Scholar 

  16. Roy S, Dasgupta A, Das PK (2007) Alkyl chain length dependent hydrogelation of L-Tryptophan-based amphiphile. Langmuir 23:11769–11776

    Article  CAS  Google Scholar 

  17. Wang D, Hao J (2011) Self-assembly fibrillar network gels of simple surfactants in organic solvents. Langmuir 27:1713–1717

    Article  CAS  Google Scholar 

  18. Hao J, Liu W, Yuan Z (2008) Gel phase originating from molecular quasi-crystallization and nanofiber growth of sodium laurate-water system. Soft Matter 4:1639–1644

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the German Research Foundation (DFG) for financial support in the frame of Programme SPP 1259 “Intelligente Hydrogele”. We are indebted to Dr. M. Krekhova for the preparation of the ff-TEM images and M. Behr for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Raue or A. Bernet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Raue, M. et al. (2013). Sodium NMR Relaxation: A Versatile Non-invasive Tool for the Monitoring of Phase Transitions and the Estimation of Effective Pore Sizes of Supramolecular Hydrogels. In: Sadowski, G., Richtering, W. (eds) Intelligent Hydrogels. Progress in Colloid and Polymer Science, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-01683-2_4

Download citation

Publish with us

Policies and ethics