Skip to main content

Humidity Sensors

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

For measurements of atmospheric humidity, a variety of different techniques has been used in the past, such as hair hygrometers, polymer sensors, optical instruments, and also those based on thermodynamic properties of moist air. Current sensor technology is mostly based on the psychrometric method, dewpoint measurements, and optical measurements, as well as capacitive sensors. Of special interest are the psychrometric theory and the theory of optical measurements. Technical specifications, exposure recommendations, necessary maintenance associated with different methods, as well as methods of quality control and calibration are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • N. Mölders, G. Kramm: Lectures in Meteorology (Springer, Cham, Heidelberg, New York, Dordrecht, London 2014)

    Book  Google Scholar 

  • M.L. Salby: Physics of the Atmosphere and Climate (Cambridge Univ. Press, Cambridge 2012)

    Book  Google Scholar 

  • R.B. Stull: An Introduction to Boundary Layer Meteorology (Kluwer, Dordrecht 1988)

    Book  Google Scholar 

  • WMO: Guide to Instruments and Methods of Observation, WMO No. 8, Volume I, Measurement of Meteorological Variables (World Meteorological Organization, Geneva 2018)

    Google Scholar 

  • D. Sonntag: Important new values of the physical constants of 1986, vapour pressure formulations based on the ITS-90, and psychrometer formulae, Z. Meteorol. 40, 340–344 (1990)

    Google Scholar 

  • T. Foken: Micrometeorology, 2nd edn. (Springer, Berlin, Heidelberg 2017)

    Book  Google Scholar 

  • VDI: Umweltmeteorologie, Meteorologische Messungen, Luftfeuchte (Environmental Meteorology, Meteorological Measurements, Air Humidity), VDI 3786 Blatt(Part) 4 (Beuth, Berlin 2013)

    Google Scholar 

  • D. Sonntag: Advancements in the field of hygrometry, Meteorol. Z. 3, 51–66 (1994)

    Article  Google Scholar 

  • B. Hardy: ITS-90 formulations for vapor pressure, frost point temperature, dew point temperature, and enhancement factors in the range –100 to +100 C, National Physical Laboratory. In: Proc. Pap. Abstr. Third Int. Symp. Humidity Moisture (1998) pp. 214–222

    Google Scholar 

  • R.W. Hyland, A. Wexler: Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K, ASHRAE Transactions 89, 500–519 (1983)

    Google Scholar 

  • A. Wexler: Vapor pressure formulation for water in range 0 to 100C. A revision, J. Res. National Bureau Stand. A. Phys. Chem. 80A, 776–785 (1976)

    Google Scholar 

  • A. Wexler: Vapor pressure formulation for ice, J. Res. National Bureau Stand. A. Phys. Chem. 81A, 5–20 (1977)

    Article  Google Scholar 

  • S. Letestu (Ed.): International Meteorological Tables, WMO No. 188, TP 94 (World Meteorological Organization, Geneva 1966), Updated 1973

    Google Scholar 

  • D. Sonntag: Hygrometrie (Akademie-Verlag, Berlin 1966--1968)

    Google Scholar 

  • A. Wexler, R.E. Ruskin (Eds.): Humidity and Moisture: Principles and Methods of Measuring Humidity in Gases, Vol. 1 (Reinhold Publishing, New York 1965)

    Google Scholar 

  • P.K. Wang, D. Zhang: An introduction to some historical governmental weather records of China, Bull. Amer. Meteorol. Soc. 69, 753–758 (1988)

    Article  Google Scholar 

  • L. Rezende: Chronology of Science (Checkmark Books, New York 2007)

    Google Scholar 

  • R. Holland, G. Stöhr: Geschichte der Hygrometer (Freunde alter Wetterinstrumente, Riedlingen 2011)

    Google Scholar 

  • P. Duham: Études Sur Léonard De Vinci (Librairie Scientifique A. Herrmann et Fils, Paris 1906)

    Google Scholar 

  • J.H. Lambert: Hygrometrie oder die Abhandlung von den Hygrometern (French Original: Essais D' Hygromètre, Ou Sur La Mesure D' Humidité) (Klett, Augsburg 1774)

    Google Scholar 

  • B. Sresnevsky: Theorie des Haarhygrometers, Beibl. Ann. Phys. Chem. 19, 875 (1895)

    Google Scholar 

  • J. Pircher: Über das Haarhygrometer, Denkschr. math. nat. Kl. Königl. Akad. Wiss. Wien 73, 267–300 (1901)

    Google Scholar 

  • F.J.W. Whipple: The Theory of the Hair Hygrometer. In: Proc. Phys. Soc. Lond., Vol. 34 (1921) pp. i–v

    Google Scholar 

  • R. Wolf: Das Asthygrometer, Z. österreichische Ges. Meteorol. 2, 410 (1867)

    Google Scholar 

  • F.W. Dunmore: An electric hygrometer and its application to radio meteorography, J. Res. National Bureau Stand. 20, 723–744 (1938)

    Article  Google Scholar 

  • F.E. Jones, A. Wexler: A barium fluoride film hygrometer element, J. Geophys. Res. 65, 2087–2095 (1960)

    Article  Google Scholar 

  • T. Foken, N. Hippmann, U. Lehmann, D. Sonntag: Feuchtigkeitsmessung mit Bariumfluorid-Meßfühlern, Z. Meteorol. 28, 26–30 (1978)

    Google Scholar 

  • W.F. Hickes: Humidity measurements by a new system, Refrig. Eng. 54(388), 351–354 (1947)

    Google Scholar 

  • M. Miess: Meßfehler bei der Taupunktmessung mit Lithiumchlorid-Feuchtefühlern, Arch. Meteorol. Geophys. Bioklim. Ser. B 16, 151–163 (1968)

    Article  Google Scholar 

  • F.V. Brock, S.J. Richardson: Meteorological Measurement Systems (Oxford Univ. Press, New York 2001)

    Book  Google Scholar 

  • G.R. Harrison: Meteorological Measurements and Instrumentations (John Wiley & Sons, Chichester 2015)

    Google Scholar 

  • H. Farahani, R. Wagiran, M.N. Hamidon: Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review, Sensors 14, 7881–7939 (2014)

    Article  Google Scholar 

  • T.S. Suntola: Capacitive Humidity Transducer, Patent US4164868 (1979)

    Google Scholar 

  • R.A. Davis, S.R. Foote, R. Foster, A.K.I.I. Richard: Relative Humidity Sensor with Integrated Signal Conditioning, Patent US4500940 (2004)

    Google Scholar 

  • J. Ivory: On the hygrometer by evaporation, Phil. Mag. J. 60, 81–88 (1822)

    Article  Google Scholar 

  • C.W. Böckmann: Gleichzeitige Beobachtungen der Hygrometer von Leslie, Saussure und De Luc, Ann. Phys. 15, 355–376 (1803)

    Article  Google Scholar 

  • J.H. Arnold: The theory of the psychrometer. I. The mechanism of evaporation, Physics 4, 255–262 (1933)

    Article  Google Scholar 

  • J.C. Maxwell: Theory of the wet bulb thermometer. In: Encyclopedia Britannica, 9th edn., Vol. 7, ed. by E. Smellie (Colin Macfarquhar and Andrew Bell, Edinburgh 1877) p. 218

    Google Scholar 

  • E.F. August: Ueber die Verdunstungskälte und deren Anwendung auf Hygrometrie, Ann. Phys. 81, 69–88 (1825)

    Article  Google Scholar 

  • E.F. August: Ueber die Verdunstungskälte und deren Anwendung auf Hygrometrie, Ann. Phys. 81, 335–344 (1825)

    Article  Google Scholar 

  • J.H. Arnold: The theory of the psychrometer. II. The effect of velocity, Physics 4, 334–340 (1933)

    Article  Google Scholar 

  • R. Assmann: Das Aspirationspsychrometer, ein neuer Apparat zur Ermittlung der wahren Temperatur und Feuchtigkeit der Luft, Wetter 4, 245–286 (1887)

    Google Scholar 

  • R. Assmann: Das Aspirationspsychrometer, ein neuer Apparat zur Ermittlung der wahren Temperatur und Feuchtigkeit der Luft, Wetter 5, 1–22 (1888)

    Google Scholar 

  • E.F. August: Über die Fortschritte der Hygrometrie (T. Trautwein, Berlin 1830)

    Google Scholar 

  • R. Assmann: Das Aspirations-Psychrometer. Ein Apparat zur Bestimmung der wahren Temperatur und Feuchtigkeit der Luft, Abh. Königlichen Preußischen Meteorol. Inst. 1, 1-270 (1892)

    Google Scholar 

  • R. Assmann: Das Schleuderpsychrometer, Z. österreichische Ges. Meteorol. 19, 154–162 (1884)

    Google Scholar 

  • A.J. Dyer, F.J. Maher: Automatic eddy-flux measurement with the evapotron, J. Appl. Meteorol. 4, 622–625 (1965)

    Article  Google Scholar 

  • D.P. Gatley: Psychrometric chart celebrates 100th anniversary, ASHRAE Journal 46(11), 16–20 (2004)

    Google Scholar 

  • C.W. Thornthwaite, J.C. Owen: A dew point recorder for measuring atmospheric moisture, Monthly Weather Rev. 68, 315–318 (1940)

    Article  Google Scholar 

  • J.F. Daniell: Observations on a New Hygrometer, Which Measures the Force and Weight of Aqueous Vapour in the Atmosphere, and the Corresponding Degree of Evaporation (E.D. Cousins, London 1820)

    Google Scholar 

  • H. Bongards: Feuchtigkeitsmessung (Oldenbourg, München, Berlin 1926), Reprint: De Gruyter, Berlin (2019)

    Book  Google Scholar 

  • S.I. Kretschmer, J.V. Karpovitsch: Maloinercionnyj ultrafioletovyj vlagometer (Sensitive ultraviolet hygrometer), Izv. AN SSSR Fiz. Atmos. Okeana 9, 642–645 (1973)

    Google Scholar 

  • L. Martini, B. Stark, G. Hunsalz: Elektronisches Lyman-Alpha-Feuchtigkeitsmessgerät, Z. Meteorol. 23, 313–322 (1973)

    Google Scholar 

  • A.L. Buck: Development of an improved Lyman-alpha hygrometer, Atmos. Technol. 2, 213–240 (1973)

    Google Scholar 

  • W. Kohsiek: The KNMI Lyman-alpha hygrometer, KNMI Technical Report 87, 12 (1986)

    Google Scholar 

  • G.S. Campbell, B.D. Tanner: A krypton hygrometer for measurement of atmospheric water vapour concentrations. In: Moisture and Humidity (Instrument Society of America, Research Triangle Park 1985) pp. 609–614

    Google Scholar 

  • L.G. Elagina: Optitscheskij pribor dlja izmerenija turbulentnych pulsacii vlaschnosti (Optical sensor for the measurement of turbulent humidity fluctuations), Izv. AN SSSR, ser. Geofiz. 12, 1100–1107 (1962)

    Google Scholar 

  • M.R. Raupach: Infrared fluctuation hygrometer in the atmospheric surface layer, Quart. J. Roy. Meteorol. Soc. 104, 309–322 (1978)

    Article  Google Scholar 

  • E. Ohtaki, T. Matsui: Infrared device for simultaneous measurement of fluctuations of atmospheric carbon dioxide and water vapor, Bound.-Layer Meteorol. 24, 109–119 (1982)

    Article  Google Scholar 

  • G. Mücket: Turbulenzmesstechnik: Infrarot-Absorptionshygrometer zur Bestimmung turbulenter Feuchtefluktuationen, Veröff. Meteorol. Dienst. DDR 27, 5–29 (1989)

    Google Scholar 

  • M.J. Heikinheimo, G.W. Thurtell, G.E. Kidd: An open path, fast response IR spectrometer for simultaneous detection of CO2 and water vapor fluctuations, J. Atm. Ocean. Techn. 6, 624–636 (1989)

    Article  Google Scholar 

  • W. Kohsiek: Infrared H2O/CO2 Sensor with fiber optics. In: Proc. 7th Symp. Meteorol. Obs. Instrum., American Meteorological Society (1991)

    Google Scholar 

  • T. Foken, R. Dlugi, G. Kramm: On the determination of dry deposition and emission of gaseous compounds at the biosphere-atmosphere interface, Meteorol. Z. 4, 91–118 (1995)

    Article  Google Scholar 

  • E. Kleinschmidt (Ed.): Handbuch der Meteorologischen Instrumente und ihrer Auswertung (Springer, Berlin 1935)

    Google Scholar 

  • R. Feistel, R. Wielgosz, S.A. Bell, M.F. Camoes, J.R. Cooper, P. Dexter, A.G. Dickson, P. Fisicaro, A.H. Harvey, M. Heinonen, O. Hellmuth, H.J. Kretzschmar, J.W. Lovell-Smith, T.J. McDougall, R. Pawlowicz, P. Ridout, S. Seitz, P. Spitzer, D. Stoica, H. Wolf: Metrological challenges for measurements of key climatological observables: Oceanic salinity and pH, and atmospheric humidity. Part 1: Overview, Metrologia 53, R1–R11 (2016)

    Article  Google Scholar 

  • R. Feistel, J.W. Lovell-Smith: Defining relative humidity in terms of water activity. Part 1: Definition, Metrologia 54, 566 (2017)

    Article  Google Scholar 

  • R. Feistel, J.W. Lovell-Smith, O. Hellmuth: Virial approximation of the TEOS-10 equation for the fugacity of water in humid air, Intern. J. Thermophys. 36, 44–68 (2015)

    Article  Google Scholar 

  • H.T. Davis: Statistical Mechanics of Phases, Interfaces and Thin Films (Wiley-VCH, Weinheim 1995)

    Google Scholar 

  • R. Feistel, W. Ebeling: Physics of Self-Organization and Evolution (Wiley-VCH, Weinheim 2011)

    Book  Google Scholar 

  • J.W. Lovell-Smith, R. Feistel, A.H. Harvey, O. Hellmuth, S.A. Bell, M. Heinonen, J.R. Cooper: Metrological challenges for measurements of key climatological observables. Part 4: Atmospheric relative humidity, Metrologia 53, R40–R59 (2016)

    Article  Google Scholar 

  • J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn. (Prentice Hall, Upper Saddle River 1999)

    Google Scholar 

  • D.G. Wright, R. Feistel, J.H. Reissmann, K. Miyagawa, D.R. Jackett, W. Wagner, U. Overhoff, C. Guder, A. Feistel, G.M. Marion: Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 2: The library routines, Ocean Sci. 6, 695–718 (2010)

    Article  Google Scholar 

  • J. Kobayashi: Investigations on hygrometry, Pap. Meteorol. Geophys. 11, 213–338 (1960)

    Article  Google Scholar 

  • H. Spencer-Gregory, E. Rourke: Hygrometry (Crosby Lockwood & Son, London 1957)

    Google Scholar 

  • N. Yamazoe, Y. Shimizu: Humidity sensors: Principles and applications, Sens. Actuators 10, 379–398 (1986)

    Article  Google Scholar 

  • R. Mota, R. Parafita, A. Giuliani, M.J. Hubin-Franskin, J.M.C. Lourenço, G. Garcia, S.V. Hoffmann, M.J. Mason, P.A. Ribeiro, M. Raposo, P. Limão-Vieira: Water VUV electronic state spectroscopy by synchrotron radiation, Chem. Phys. Lett. 416, 152–159 (2005)

    Article  Google Scholar 

  • MPI: The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest, http://satellite.mpic.de/spectral_atlas. (2017)

  • S. Ogawa, M. Ogawa: Absorption cross sections of O2(a1Δg) and O2(X3Σg–) in the region from 1087 to 1700 Å, Can. J. Phys. 53, 1845–1852 (1975)

    Article  Google Scholar 

  • B.J. Finlayson-Pitts, J.N. Pitts: Chemistry of the Upper and Lower Atmosphere (Academic Press, San Diego 2000)

    Google Scholar 

  • T. Foken, H. Falke: Technical note: calibration device for the krypton hygrometer KH20, Atmos. Meas. Tech. 5, 1861–1867 (2012)

    Article  Google Scholar 

  • D. Sonntag: Vergleichsmessungen mit Hygrometern über einen Zeitraum bis zu 50 Jahren, Mitt. DMG 16(3), 27–28 (2014)

    Google Scholar 

  • A. Lang: Neue Wege der Entwicklung haarhygrometrischer Sensoren, Meteorol. Rundsch. 32, 97–108 (1979)

    Google Scholar 

  • B. Ingleby, D. Moore, C. Sloan, R. Dunn: Evolution and accuracy of surface humidity reports, J. Atm. Ocean. Techn. 30, 2025–2043 (2013)

    Article  Google Scholar 

  • D. Sonntag: WMO Assmann aspiration psychrometer intercomparison, WMO, Instruments Observ. Methods 34, 1–185 (1989)

    Google Scholar 

  • Deutscher Wetterdienst: Aspirations-Psychrometer-Tafeln (Friedr. Vieweg & Sohn, Braunschweig, Wiesbaden 1997)

    Google Scholar 

  • G. Scholz: Bestimmung des Psychrometerkoeffizienten für das Aspirationspsychrometer nach Assmann, Z. Meteorol. 37, 229–230 (1987)

    Google Scholar 

  • E. Frankenberger: Untersuchungen über den Vertikalaustausch in den unteren Dekametern der Atmosphäre, Ann. Meteorol. 4, 358–374 (1951)

    Google Scholar 

  • R.G. Wylie, T. Lalas: Measurement of temperature and humidity, WMO, Techn. Note 194, 1–77 (1992)

    Google Scholar 

  • R. Schädlich, D. Sonntag: Ein elektrisches Aspirationspsychrometer nach einem WMO-Vorschlag, Z. Meteorol. 25, 236–247 (1975)

    Google Scholar 

  • H. Vömel, P. Jeannet: Balloon-borne frostpoint-hygrometry. In: Monitoring Atmospheric Water Vapour, Ground-Based Remote Sensing and in-situ Methods, ISSI Scientific Report Series, Vol. 10, ed. by N. Kämpfer (Springer, New York, Dordrecht, Heidelberg, London 2013) pp. 39–53

    Chapter  Google Scholar 

  • H. Richner, P. Ruppert, B. Neininger: Performance characteristics of a miniaturized dew point mirror in air-born and surface applications. In: Proc. 7th Symp. Meteorol. Observ. Instrum., Boston, American Meteorological Society (1991) pp. 307–310

    Google Scholar 

  • J. Skaar, K. Hegg, T. Moe, K. Smedstud: WMO international hygrometer intercomparison, WMO, Instrum. Obs. Methods 38, 1–246 (1989)

    Google Scholar 

  • A.L. Buck: The variable-path Lyman-alpha hygrometer and its operating characteristics, Bull. Am. Meteorol. Soc. 57, 1113–1118 (1976)

    Article  Google Scholar 

  • J.E. Tillman: Water vapor density measurements utilizing the absorption of vacuum ultraviolet and infrared radiation. In: Humidity and Moisture, Measurement and Control in Science and Industry, Principles and Methods of Measuring Humidity in Gases, Vol. 1, ed. by R.E. Ruskin (Reinhold, New York 1965) pp. 428–433

    Google Scholar 

  • B.D. Tanner, E. Swiatek, J.P. Greene: Density fluctuations and use of the krypton hygrometer in surface flux measurements. In: Management of Irrigation and Drainage Systems: Integrated Perspectives, ed. by R.G. Allen (American Society of Civil Engineers, New York 1993) pp. 945–952

    Google Scholar 

  • A. van Dijk, W. Kohsiek, H.A.R. DeBruin: Oxygen sensitivity of krypton and Lyman-alpha hygrometers, J. Atm. Oceanic Techn. 20, 143–151 (2003)

    Article  Google Scholar 

  • T. Foken, A.L. Buck, R.A. Nye, R.D. Horn: A Lyman-alpha hygrometer with variable path length, J. Atm. Oceanic Techn. 15, 211–214 (1998)

    Article  Google Scholar 

  • T. Foken, H. Falke: Technical note: calibration instrument for the krypton hygrometer KH20, Atmos. Meas. Tech. 5, 1861–1867 (2012)

    Article  Google Scholar 

  • A.S. Kowalski, P. Serrano-Ortiz: On the relationship between the eddy covariance, the turbulent flux, and surface exchange for a trace gas such as CO2, Bound.-Layer Meteorol. 124, 129–141 (2007)

    Article  Google Scholar 

  • E.K. Webb, G.I. Pearman, R. Leuning: Correction of the flux measurements for density effects due to heat and water vapour transfer, Quart. J. Roy. Meteorol. Soc. 106, 85–100 (1980)

    Article  Google Scholar 

  • L. Greenspan: Humidity fixed points of binary saturated aqueous solutions, J. Res. National Bureau Stand. A. Phys. Chem. 81A, 89–96 (1977)

    Article  Google Scholar 

  • VDI: Umweltmeteorologie - Meteorologische Messungen - Grundlagen (Environmental Meteorology - Meteorological Measurements - Basics), VDI 3786, Band1 (Part 1) (Beuth, Berlin 2013)

    Google Scholar 

Download references

Acknowledgements

We acknowledge several companies for using photographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Foken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Sonntag, D., Foken, T., Vömel, H., Hellmuth, O. (2021). Humidity Sensors. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_8

Download citation

Publish with us

Policies and ethics