Skip to main content

Bathymetry Reconstruction Using Inverse ShallowWater Models: Finite Element Discretization and Regularization

  • Chapter
  • First Online:
Numerical Methods for Flows

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 132))

Abstract

In the present paper, we use modified shallow water equations (SWE) to reconstruct the bottom topography (also called bathymetry) of a flow domain without resorting to traditional inverse modeling techniques such as adjoint methods. The discretization in space is performed using a piecewise linear discontinuous Galerkin (DG) approximation of the free surface elevation and (linear) continuous finite elements for the bathymetry. Our approach guarantees compatibility of the discrete forward and inverse problems: for a given DG solution of the forward SWE problem, the underlying continuous bathymetry can be recovered exactly. To ensure well-posedness of the modified SWE and reduce sensitivity of the results to noisy data, a regularization term is added to the equation for the water height. A numerical study is performed to demonstrate the ability of the proposed method to recover bathymetry in a robust and accurate manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizinger, V., Dawson, C.: A discontinuous Galerkin method for two-dimensional flow and transport in shallow water. Adv. Water Resour. 25(1), 67–84 (2002)

    Article  Google Scholar 

  2. Becker, R., Hansbo, P.: A simple pressure stabilization method for the Stokes equation. Int. J. Numer. Methods Biomed. Eng. 24(11), 1421–1430 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Hackbusch, W. (ed.) Efficient Solutions of Elliptic Systems. Notes on Numerical Fluid Mechanics, vol. 10, pp. 11–19. Vieweg+ Teubner Verlag, Wiesbaden (1984)

    Chapter  Google Scholar 

  4. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    Article  MathSciNet  Google Scholar 

  5. Cushman-Roisin, B., Beckers, J.-M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic, Cambridge (2011)

    MATH  Google Scholar 

  6. Frank, F., Reuter, B., Aizinger, V., Knabner, P.: FESTUNG: A MATLAB / GNU Octave toolbox for the discontinuous Galerkin method, part I: diffusion operator. Comput. Math. Appl. 70(1), 11–46 (2015)

    Article  MathSciNet  Google Scholar 

  7. Gessese, A.F., Sellier, M.: A direct solution approach to the inverse shallow-water problem. Math. Probl. Eng. 2012, 18 (2012)

    Google Scholar 

  8. Gessese, A.F., Sellier, M., Van Houten, E., Smart, G.: Reconstruction of river bed topography from free surface data using a direct numerical approach in one-dimensional shallow water flow. Inverse Prob. 27(2), 025001 (2011)

    Article  MathSciNet  Google Scholar 

  9. Gessese, A.F., Smart, G., Heining, C., Sellier, M.: One-dimensional bathymetry based on velocity measurements. Inverse Prob. Sci. Eng. 21(4), 704–720 (2013)

    Article  MathSciNet  Google Scholar 

  10. Gessese, A.F., Wa, K.M., Sellier, M.: Bathymetry reconstruction based on the zero-inertia shallow water approximation. Theor. Comput. Fluid Dyn. 27(5), 721–732 (2013)

    Article  Google Scholar 

  11. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  12. Hajduk, H.: Numerical investigation of direct bathymetry reconstruction based on a modified shallow-water model. Master’s thesis, University Erlangen-Nuremberg (2017)

    Google Scholar 

  13. Hajduk, H., Hodges, B.R., Aizinger, V., Reuter, B.: Locally filtered transport for computational efficiency in multi-component advection-reaction models. Environ. Model. Softw. 102, 185–198 (2018)

    Article  Google Scholar 

  14. Hilldale, R.C., Raff, D.: Assessing the ability of airborne lidar to map river bathymetry. Earth Surf. Process. Landf. 33(5), 773–783 (2008)

    Article  Google Scholar 

  15. Jaust, A., Reuter, B., Aizinger, V., Schütz, J., Knabner, P.: FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method, part III: hybridized discontinuous Galerkin (HDG) formulation. Comput. Math. Appl. 75(12), 4505–4533 (2018). https://doi.org/10.1016/j.camwa.2018.03.045

    Article  MathSciNet  Google Scholar 

  16. Plant, W.J., Branch, R., Chatham, G., Chickadel, C.C., Hayes, K., Hayworth, B., Horner-Devine, A., Jessup, A., Fong, D.A., Fringer, O.B., Giddings, S.N., Monismith, S., Wang, B.: Remotely sensed river surface features compared with modeling and in situ measurements. J. Geophys. Res. Oceans 114(C11002) (2009)

    Google Scholar 

  17. Reuter, B., Aizinger, V., Wieland, M., Frank, F., Knabner, P.: FESTUNG: A MATLAB / GNU Octave toolbox for the discontinuous Galerkin method. Part II: advection operator and slope limiting. Comput. Math. Appl. 72(7), 1896–1925 (2016)

    MATH  Google Scholar 

  18. Roberts, A.C.B.: Shallow water bathymetry using integrated airborne multi-spectral remote sensing. Int. J. Remote Sens. 20(3), 497–510 (1999)

    Article  Google Scholar 

  19. Vreugdenhil, C.B.: Numerical Methods for Shallow-Water Flow. Springer Science & Business Media, Berlin (1994)

    Book  Google Scholar 

  20. Westaway, R.M., Lane, S.N., Hicks, D.M.: The development of an automated correction procedure for digital photogrammetry for the study of wide, shallow, gravel-bed rivers. Earth Surf. Process. Landf. 25(2), 209–226 (2000)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the German Research Association (DFG) under grant AI 117/2-1 (KU 1530/12-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Kuzmin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hajduk, H., Kuzmin, D., Aizinger, V. (2020). Bathymetry Reconstruction Using Inverse ShallowWater Models: Finite Element Discretization and Regularization. In: van Brummelen, H., Corsini, A., Perotto, S., Rozza, G. (eds) Numerical Methods for Flows. Lecture Notes in Computational Science and Engineering, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-030-30705-9_20

Download citation

Publish with us

Policies and ethics