Skip to main content

Icephobicity: Definition and Measurement Regarding Atmospheric Icing

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 284))

Abstract

Atmospheric ice that adheres to structures and accumulates is a critical issue in numerous northern areas. Even if different de-icing methods exist, they consume a great deal of energy or necessitate elaborate infrastructures. However, using coatings with icephobic properties could be the “miracle” solution. This chapter proposes a complete definition of icephobicity in line with the ice adhesion test methods used. The general way to assess this property is described using a holistic approach, the first step of which is a screening test campaign with many different candidate coatings evaluated in terms of their adhesion reduction factor (ARF). The relevance of this factor is also discussed. Further tests are recommended, after the better candidate coatings are identified, in an extensive test campaign performed under simulated icing and outdoor conditions prevailing in the real environment of the targeted application. Finally, a specific example of a test campaign in which the icephobic coatings are exposed to Arctic offshore conditions is presented.

This is a preview of subscription content, log in via an institution.

References

  1. Aviation Safety (1971) Surgut aeroflot antonov. http://aviation-safety.net/database/record.php?id=19710122-0. Accessed 30 Sept 2016

  2. Aviation Safety (1974) Turkish airlines flight 301. http://aviation-safety.net/database/record.php?id=19740126-0. Accessed 30 Sept 2016

  3. National Transportation Safety Board (1982) Aircraft accident report: Air Florida flight 90. Washington

    Google Scholar 

  4. Aviation Safety (1985) Arrow air flight 1285. http://aviation-safety.net/database/record.php?id=19851212-0. Accessed 30 Sept 2016

  5. Moshansky VP (1992) Commission of inquiry into the air Ontario crash at Dryden, Ontario (Canada). http://epe.lac-bac.gc.ca/100/200/301/pco-bcp/commissions-ef/moshansky1992-eng/moshansky1992-eng.htm. Accessed 30 Sept 2016

  6. National Transportation Safety Board (1992) Aircraft accident report: USAIR flight 405. Washington

    Google Scholar 

  7. National Transportation Safety Board (1994) Aircraft accident report: Americain Eagle flight 4184. Washington

    Google Scholar 

  8. Aviation Safety (2004) China eastern airlines flight 5210. http://aviation-safety.net/database/record.php?id=20041121-0. Accessed 30 Sept 2016

  9. National Transportation Safety Board (2009) Aircraft accident report: Colgan Air flight 3407. Washington

    Google Scholar 

  10. Aviation Safety (2009) Air France flight 447. https://aviation-safety.net/database/record.php?id=20090601-0. Accessed 31 Jan 2017

  11. Transports Canada (2005) Guidelines for aircraft ground icing operations. Ottawa

    Google Scholar 

  12. Laforte J-L, Allaire M-A, Laflamme J (1998) State-of-the-art on power line de-icing. Atmos Res 46(1):143–158. https://doi.org/10.1016/S0169-8095(97)00057-4

    Article  Google Scholar 

  13. SAE AMS1424 (2016) Deicing/anti-icing fluid, aircraft, SAE Type I. SAE International, Warrendale

    Google Scholar 

  14. SAE AMS1428 (2017) Fluid aircraft deicing/anti-icing, non Newtonian (Pseudoplastic), SAE Types II, Type III and Type IV. SAE International, Warrendale

    Google Scholar 

  15. SAE AMS1431 (2012) Compound, solid runway and taxiway deicing/anti-icing. SAE International, Warrendale

    Google Scholar 

  16. SAE AMS1435 (2012) Fluid, generic, deicing/anti-icing runways and taxiways. SAE International, Warrendale

    Google Scholar 

  17. Goraj Z (2004) An overview of the deicing and antiicing. Paper presented at the 24th international congress of the aeronautical sciences, Yokohama

    Google Scholar 

  18. Landy M, Freiberger A (1967) Studies of ice adhesion: ice adhesion to plastics. J Colloid Interf Sci 25(2):231–244

    Article  CAS  Google Scholar 

  19. Tarquini S, Antonini C, Amirfazli A, Marengo M, Palacios J (2014) Investigation of ice shedding properties of superhydrophobic coatings on helicopter blades. Cold Reg Sci Technol 100:50–58. https://doi.org/10.1016/j.coldregions.2013.12.009

    Article  Google Scholar 

  20. Laforte C, Blackburn C, Perron J, Aubert R (2014) Icephobic coating evaluation for aerospace application. Paper presented at the 55th AIAA/ASMe/ASCE/AHS/SC structures, structural dynamics, and materials conference, National Harbor

    Google Scholar 

  21. Susoff M, Siegmann K, Pfaffenroth C, Hirayama M (2013) Evaluation of icephobic coatings—screening of different coatings and influence of roughness. Appl Surf Sci 282:870–879. https://doi.org/10.1016/j.apsusc.2013.06.073

    Article  CAS  Google Scholar 

  22. Makkonen L (2012) Ice adhesion – theory, measurements and countermeasures. J Adhes Sci Technol 26(4–5):413–445. https://doi.org/10.1163/016942411x574583

    Article  CAS  Google Scholar 

  23. Kreder MJ, Alvarenga J, Kim P, Aizenberg J (2016) Design of anti-icing surfaces: smooth, textured or slippery? Nat Rev Mater 1:15003

    Article  CAS  Google Scholar 

  24. Schutzius TM, Jung S, Maitra T, Eberle P, Antonini C, Stamatopoulos C, Poulikakos D (2014) Physics of icing and rational design of surfaces with extraordinary icephobicity. Langmuir 31(17):4807–4821

    Article  Google Scholar 

  25. Sojoudi H, Wang M, Boscher N, McKinley G, Gleason K (2016) Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces. Soft Matter 12(7):1938–1963

    Article  CAS  Google Scholar 

  26. He Y, Jiang C, Cao X, Chen J, Tian W, Yuan W (2014) Reducing ice adhesion by hierarchical micro-nano-pillars. Appl Surf Sci 305:589–595. https://doi.org/10.1016/j.apsusc.2014.03.139

    Article  CAS  Google Scholar 

  27. Xiao J, Chaudhuri S (2012) Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes. Langmuir 28(9):4434–4446. https://doi.org/10.1021/la2034565

    Article  CAS  PubMed  Google Scholar 

  28. Jung S, Dorrestijn M, Raps D, Das A, Megaridis CM, Poulikakos D (2011) Are superhydrophobic surfaces best for icephobicity? Langmuir 27(6):3059–3066. https://doi.org/10.1021/la104762g

    Article  CAS  PubMed  Google Scholar 

  29. Zheng L, Li Z, Bourdo S, Khedir KR, Asar MP, Ryerson CC, Biris AS (2011) Exceptional superhydrophobicity and low velocity impact icephobicity of acetone-functionalized carbon nanotube films. Langmuir 27(16):9936–9943. https://doi.org/10.1021/la201548k

    Article  CAS  PubMed  Google Scholar 

  30. Parent O, Ilinca A (2011) Anti-icing and de-icing techniques for wind turbines: critical review. Cold Reg Sci Technol 65(1):88–96. https://doi.org/10.1016/j.coldregions.2010.01.005

    Article  Google Scholar 

  31. Antonini C, Innocenti M, Horn T, Marengo M, Amirfazli A (2011) Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg Sci Technol 67(1–2):58–67. https://doi.org/10.1016/j.coldregions.2011.02.006

    Article  Google Scholar 

  32. Baum B, Thoma LA, Holley WH (1996) Development of conductor deicing systems. Electric Power Research Institute, Palo Alto, p 133

    Google Scholar 

  33. Andersson L-O, Golander C-G, Persson S (1994) Ice adhesion to rubber materials. J Adhes Sci Technol 8(2):117–132. https://doi.org/10.1163/156856194X00104

    Article  CAS  Google Scholar 

  34. Croutch VK, Hartley RA (1992) Adhesion of ice to coatings and the performance of ice release coatings. J Coating Technol 64(815):41–53

    CAS  Google Scholar 

  35. Yoshida M, Ohichi T, Konno K, Gocho M (1991) Adhesion of ice to various materials. Paper presented at the cold regions technology conference, Japan

    Google Scholar 

  36. Lliboutry L (1964) Traite de glaciologie. Masson, Paris

    Google Scholar 

  37. Schulz M, Sinapius M (2015) Evaluation of different ice adhesion tests for mechanical deicing systems. Paper presented at the international conference on icing of aircraft, engines, and structures, Prague

    Google Scholar 

  38. Haehnel RB (2002) Evaluation of coatings for icing control at hydraulic structures. Ice Eng 33:4

    Google Scholar 

  39. Jellinek HG (1959) Adhesive properties of ice. J Coll Sci 14(3):268–280

    Article  CAS  Google Scholar 

  40. Druez J, Phan LC, Laforte J-L, Nguyen DD (1979) The adhesion of glaze and rime on aluminium electrical conductors. Trans CSME 5(4):215–220

    Google Scholar 

  41. Blackburn C, Laforte C, Laforte J-L (2000) Apparatus for measuring the adhesion force of a thin ice sheet on a substrate. Paper presented at the 9th international workshop on atmospheric icing on structures, Chester, England

    Google Scholar 

  42. Javan-Mashmool M, Volat C, Farzaneh M (2006) A new method for measuring ice adhesion strength at an ice-substrate interface. Hydrol Process 20(4):645–655

    Article  Google Scholar 

  43. Laforte C, Beisswenger A (2005) Icephobic material centrifuge adhesion test. Paper presented at the 11th international workshop on atmospheric icing on structures, Montreal

    Google Scholar 

  44. Stallabrass JR, Price RD (1963) On the adhesion of ice to various materials, National Research Laboratories. Can Aeronaut Space J 9:199–204

    Google Scholar 

  45. Raraty LE, Tabor D (1958) The adhesion and strength properties of ice. Proc Soc Math Phys Sci 245(1241):184–201. https://doi.org/10.1098/rspa.1958.0076

    Article  Google Scholar 

  46. Fortin G, Beisswenger A, Perron J (2010) Centrifuge adhesion test to evaluate icephobic coatings. Paper presented at the 2nd AIAA atmospheric and space environments conference, Toronto

    Google Scholar 

  47. Guerin F, Laforte C, Farinas M-I, Perron J (2016) Analytical model based on experimental data of centrifuge ice adhesion tests with different substrates. Cold Reg Sci Technol 121:93–99. https://doi.org/10.1016/j.coldregions.2015.10.011

    Article  Google Scholar 

  48. Laforte C, Blackburn C, Perron J (2015) A review of icephobic coating performances over the last decade. Paper presented at the conference on icing of aircraft, engines, and structures, Prague, Czech Republic, June 22–25

    Google Scholar 

  49. SAE AIR4096 (1995) Droplet size instrumentation used in icing facilities. SAE International, Warrendale

    Google Scholar 

  50. Bengaluru Subramanyam S, Kondrashov V, Rühe J, Varanasi KK (2016) Low ice adhesion on nano-textured superhydrophobic surfaces under supersaturated conditions. ACS Appl Mater Inter 8(20):12583–12587

    Article  CAS  Google Scholar 

  51. Bharathidasan T, Kumar V, Bobji M, Chakradhar R, Basu BJ (2014) Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces. Appl Surf Sci 314:241–250

    Article  CAS  Google Scholar 

  52. Brassard JD, Sarkar DK, Perron J, Audibert-Hayet A, Melot D (2015) Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion. J Colloid Interface Sci 447:240–247. https://doi.org/10.1016/j.jcis.2014.11.076

    Article  CAS  PubMed  Google Scholar 

  53. Dixon B, Walsh A, Gall B, Goodwin M (2011) Novel phase change material icephobic coating for ice mitigation in marine environments. In: Proceedings of the 12th general assembly of IAMU, Gydnia

    Google Scholar 

  54. Dodiuk H, Kenig S, Dotan A (2012) Do self-cleaning surfaces repel ice? J Adhes Sci Technol 26(4–5):701–714

    Article  CAS  Google Scholar 

  55. Foroughi Mobarakeh L, Jafari R, Farzaneh M (2013) The ice repellency of plasma polymerized hexamethyldisiloxane coating. Appl Surf Sci 284:459–463. https://doi.org/10.1016/j.apsusc.2013.07.119

    Article  CAS  Google Scholar 

  56. Smith JG, Wohl CJ, Kreeger RE, Palacios J, Knuth T, Hadley KR (2016) Effect of molecular flexibility upon ice adhesion shear strength. Paper presented at the 39th annual adhesion society meeting, San Antonio

    Google Scholar 

  57. Kulinich SA, Farzaneh M (2009) Ice adhesion on super-hydrophobic surfaces. Appl Surf Sci 255(18):8153–8157

    Article  CAS  Google Scholar 

  58. Li W, Zhang X, Yang J, Miao F (2013) In situ growth of superhydrophobic and icephobic films with micro/nanoscale hierarchical structures on the aluminum substrate. J Coll Inter Sci 410:165–171. https://doi.org/10.1016/j.jcis.2013.07.063

    Article  CAS  Google Scholar 

  59. Ling EJY, Uong V, Renault-Crispo J-S, Kietzig A-M, Servio P (2016) Reducing ice adhesion on nonsmooth metallic surfaces: wettability and topography effects. ACS Appl Mater Inter 8(13):8789–8800

    Article  CAS  Google Scholar 

  60. Menini R, Farzaneh M (2009) Elaboration of Al2O3/PTFE icephobic coatings for protecting aluminium surfaces. Surf Coat Technol 203:1941–1946

    Article  CAS  Google Scholar 

  61. Momen G, Jafari R, Farzaneh M (2015) Ice repellency behaviour of superhydrophobic surfaces: effects of atmospheric icing conditions and surface roughness. Appl Surf Sci 349:211–218. https://doi.org/10.1016/j.apsusc.2015.04.180

    Article  CAS  Google Scholar 

  62. Brassard JD (2016) Revêtements nanostructurés pour la protection des métaux dans les environnements marins – Nanostructured coatings for the protection of metal in marine environments. Dissertation, Université du Québec à Chicoutimi, Chicoutimi

    Google Scholar 

  63. ASTM D1141-98 (2013) Standard practice for the preparation of substitute ocean water. ASTM International, West Conshohocken

    Google Scholar 

  64. ASTM D4587-11 (2011) Standard practice for fluorescent UV-condensation exposures of paint and related coatings. ASTM International, West Conshohocken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Blackburn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brassard, JD., Laforte, C., Guerin, F., Blackburn, C. (2018). Icephobicity: Definition and Measurement Regarding Atmospheric Icing. In: Wohl, C., Berry, D. (eds) Contamination Mitigating Polymeric Coatings for Extreme Environments. Advances in Polymer Science, vol 284. Springer, Cham. https://doi.org/10.1007/12_2017_36

Download citation

Publish with us

Policies and ethics