Skip to main content

Advertisement

Log in

Hematite Core Nanoparticles with Carbon Shell: Potential for Environmentally Friendly Production from Iron Mining Sludge

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hematite nanoparticles with amorphous, yet relatively uniform carbon shell, were produced based exclusively on the waste sludge from the iron mine as the raw material. The procedure for acid digestion-based purification of the sludge with the full recovery of acid vapors and the remaining non-toxic rubble is described. Synthesis of the hematite nanoparticles was performed by the arrested precipitation method with cationic surfactant. The particles were thoroughly characterized and the potential of their economical production for the battery industry is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.L. Huber, Synthesis, Properties, Applications of Iron Nanoparticles, Small, 2005, 1(5), p 482–501

    Article  Google Scholar 

  2. A.I. Martinez, M.A. Garcia-Lobato, and D.L. Perry, Study of the Properties of Iron Oxide Nanostructures, Research in Nanotechnology Developments, A. Barrañón, Ed., Nova Science, New York, 2009, p 183–194

    Google Scholar 

  3. L. Wezeng, W. Zhou, H. Li, Z. Zhou, B. Zhou, S. Gongquan, and Q. Xin, Nano-stuctured Pt-Fe/C as Cathode Catalyst in Direct Methanol Fuel Cell, Electrochim. Acta, 2004, 49(7), p 1045–1055

    Article  Google Scholar 

  4. M. Ohnuma, K. Hono, T. Yanai, H. Fukunaga, and Y. Yoshizawa, Direct Evidence for Structural Origin of Stress-Induced Magnetic Anisotropy in Fe-Si-B-Nb-Cu Nanocrystalline Alloys, Appl. Phys. Lett., 2003, 83(14), p 2859–2861

    Article  Google Scholar 

  5. J. He, H. Zhao, J. Wang, J. Wang, and J. Chen, Hydrothermal Synthesis and Electrochemical Properties of Nano-sized Co-Sn Alloy Anodes for Lithium Ion Batteries, J. Alloy. Compd., 2010, 58(2), p 629–635

    Article  Google Scholar 

  6. F. Riccardo, J. Jellinek, and R.L. Johston, Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles, Chem. Rev., 2008, 108(3), p 845–910

    Article  Google Scholar 

  7. E.E. Carpenter, J.A. Sims, J.A. Wienmann, W.L. Zhou, and C.J. O’Connor, Magnetic Properties of Iron and Iron Platinum Alloys Synthesized via Microemulsion Techniques, J. Appl. Phys., 2000, 87(9), p 5615–5617

    Article  Google Scholar 

  8. S. Roy, B. Bay, and D. Chakravorty, Magnetic Properties of Iron Nanoparticles Grown in a Glass Matrix, J. Appl. Phys., 1996, 79, p 1642–1645

    Article  Google Scholar 

  9. D.K. Kim, W. Voit, W. Zapka, M. Bjelke, M. Muhammed, and K.V. Rao, Biomedical Application of Ferrofluids Containing Magnetite Nanoparticles, Mater. Research Society Proceedings 676, 2001, Y8.32.1.

  10. A.K. Gupta and M. Gupta, Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications, Biomaterials, 2005, 26(18), p 3995–4021

    Article  Google Scholar 

  11. Q.A. Pankhurst, J. Connolly, S.K. Jones, and J. Dobson, Application of Magnetic Nanoparticles in Biomedicine, J. Phys. D, 2003, 36, p 167–181

    Article  Google Scholar 

  12. B. Plietker, Iron Catalysis: Fundamentals and Applications, Springer, Heidelberg, 2011

    Book  Google Scholar 

  13. A.N. Pour, M.R. Housaindokht, S.F. Tayyari, and J. Zarkesh, Fischer-Tropsch Synthesis by Nano-structured Iron Catalyst, J. Nat. Gas Chem., 2010, 19(3), p 284–292

    Article  Google Scholar 

  14. D.R. Wilburn and D.I. Bleiwas, Platinum-Group Metals-World Supply and Demand, U.S. Geological Survey Open-File Report, U.S. Department of the Interior, U.S. Geological Survey, No. 2004-1224, 2004.

  15. A. Cowley, Platinum 2013 Interim Review, Johnson & Matthey, Royston, 2013

    Google Scholar 

  16. C. Bolm, A New Iron Age, Nat. Chem., 2009, 1(5), p 420

    Article  Google Scholar 

  17. K. Maheshwari, Sustainable Metal Catalysis The Paradigm of Iron Metal, Seminar Green Chemistry and Catalysis at the Department of Chemistry at the Institute of Chemical Technology, Mumbai, 2011.

  18. X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, and R.S. Ruoff, Nanostructured Reduced Graphene Oxide/Fe2O3 Composite as a High-Performance Anode Material for Lithium Ion Batteries, ACS Nano, 2011, 5(4), p 3333–3338

    Article  Google Scholar 

  19. D. Wang, Y. Li, Q. Wang, and T. Wang, Nanostructured Fe2O3-Graphene Composite as a Novel Electrode Material for Supercapacitors, J. Solid State Electrochem., 2011, 16, p 2095–2102

    Article  Google Scholar 

  20. T. Kim, A. Magasinski, K. Jacob, K. Yushin, and R. Tannenbaum, Synthesis and Electrochemical Performance of Reduced Graphene Oxide/Maghemite Composite Anode for Lithium Ion Batteries, Carbon, 2013, 52, p 56–64

    Article  Google Scholar 

  21. C. He, S. Wu, N. Zhao, C. Shi, E. Liu, and J. Li, Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material, ACS Nano, 2013, 7(5), p 4459–4469

    Article  Google Scholar 

  22. S. Gotovac-Atlagić, J. Malina, and M. Mionić-Ebersold, From Mud to Bud-Recovering Bosnian Forgotten Iron, 8 th European Waste Water Management Conference and Exhibition, Manchester, 2014

  23. 3030 G, Nitric acid-sulfuric acid digestion, 3030 H. Nitric acid-perchloric acid digestion, Standard Methods for the Examination of Water and Wastewater, A.E. Eaton, L.S. Clesceri, and A.E. Greenberg, Ed., American Public Health Association, 1995, p. 3–6

  24. 3500-Fe D. Phenanthroline Method, Standard Methods for the Examination of Water and Wastewater, A.E. Eaton, L.S. Clesceri, and A.E. Greenberg, Ed., American Public Health Association, 1995, p. 3–68.

  25. 3500-Mn B. Persulfate Method, Standard Methods for the Examination of Water and Wastewater, A.E. Eaton, L.S. Clesceri, and A.E. Greenberg, Ed., American Public Health Association, 1995, p. 3–6.

  26. D. Stević, K. Kaneko, Y. Hattori, R. Kukobat, I. Šurlan, and S. Gotovac-Atlagić, Precipitation of the Highly Crystalline Iron Nanoparticles from the Iron Mine Waste Water, International Conference of Environmental Protection and Related Sciences Applicable in Environmental Protection, Novi Sad, Serbia, 2014.

  27. A. Grbić and R. Cvijić, Novi prilozi za geologiju i metalurgiju gvožđa “Ljubija”; Prijedor, 2003, p. 49–55.

  28. H.-J. Song, X.-H. Jia, and X. Zhang, Controllable Fabrication, Growth Mechanism, and Gas Sensing Properties of Hollow Hematite Polyhedra, J. Mater. Chem., 2012, 22(42), p 22699–22705

    Article  Google Scholar 

  29. H. Wang, D. Ma, X. Huang, and X. Zhang, General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance, Sci. Rep., 2012, 2(701), p 1 8

    Google Scholar 

  30. K. Kaneko, C. Ishii, M. Ruike, and H. Kuwabara, Origin of Superhigh Surface Area and Microcrystalline Graphitic Structures of Activated Carbons, Carbon, 1992, 30, p 1075–1088

    Article  Google Scholar 

  31. Lj.R. Radovic, C. Moreno-Castilla, and J. Rivera-Utrilla, Chemistry and Physics of Carbon: A Series of Advances, Vol 27, Marcel Dekker, Inc., New York, 2000, p 227–405

    Google Scholar 

  32. S. Utsumi and K. Kaneko, Carbon Nanotubes-From Research to Applications, S. Bianco, Ed., InTech-Open Access Company, Rijeka, 2011, p 37–54

    Google Scholar 

  33. P.J.F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications, Cambridge University Press, Cambridge, 2011

    Google Scholar 

  34. T.S. Oyama, Introduction to the Chemistry of Transition Metal Carbides and Nitrides, Springer, Dordrecht, 1996

    Book  Google Scholar 

  35. J.C. Park, S.C. Yeo, D.H. Chun, J.T. Lim, J.-I. Yang, H.-T. Lee, S. Hong, H.M. Lee, C.S. Kim, and H. Jung, Highly Activated K-Doped Iron Carbide Nanocatalysts Designed by Computational Simulation for Fischer-Tropsch Synthesis, J. Mater. Chem. A, 2014, 2(35), p 14371–14379

    Article  Google Scholar 

  36. R.E. Smalley and B. Yakobson, Solid State Commun., 1998, 107(11), p 597–606

    Article  Google Scholar 

  37. C. Okoli, M. Boutonnet, L. Mariey, S. Järås, and G. Rajarao, Application of Magnetic Iron Oxide Nanoparticles Prepared from Microemulsions for Protein Purification, J. Chem. Technol. Biotechnol., 2011, 86(11), p 1386–1393

    Article  Google Scholar 

  38. J. Hjøllum, A Study of Iron Oxide Nano-particles Manufactured by Reverse Micelles, M.S. Thesis, University of Copenhagen, Denmark, 2004.

  39. S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, and G.Y. Yurkov, Magnetic Nanoparticles: Preparation, Structure and Properties, Russ. Chem. Rev., 2005, 74(6), p 489–520

    Article  Google Scholar 

  40. S. Bahir, R.W. McCabe, C. Boxall, M.S. Leaver, and D. Mobbs, Synthesis of α- and β-FeOOH Iron Oxide Nanoparticles in Non-ionic Surfactant Medium, J. Nanopart. Res., 2009, 11, p 701–706

    Article  Google Scholar 

  41. W. Zhou, J. Zhu, Ch Cheng, J. Liu, H. Yang, Ch Cong, C. Guan, X. Jia, H.J. Fan, Q. Yan, ChM Lid, and T. Yu, A General Strategy Toward Graphene@metal Oxide Core-Shell Nanostructures for High-Performance Lithium Storage, Energy Environ. Sci., 2011, 4, p 4954–4961

    Article  Google Scholar 

  42. D. Chen, W. Wei, R. Wang, J. Zhu, and L. Guo, α-Fe2O3 Nanoparticles Anchored on Graphene with 3D Quasi-laminated Architecture: In Situ Wet Chemistry Synthesis and Enhanced Electrochemical Performance for Lithium Ion Batteries, New J. Chem., 2012, 36, p 1589–1595

    Article  Google Scholar 

  43. G.-W. Zhou, J. Wang, P. Gao, X. Yang, Y. He, X. Liao, J. Yang, and Z. Ma, Facile Spray Drying Route for the Three-Dimensional Graphene-Encapsulated Fe2O3 Nanoparticles for Lithium Ion Battery Anodes, Ind. Eng. Chem. Res., 2013, 52, p 1197–1204

    Article  Google Scholar 

  44. H. Hashimoto, G. Kobayashi, R. Sakuma, T. Fujii, N. Hayashi, T. Suzuki, R. Kanno, M. Takano, and J. Takada, Bacterial Nanometric Amorphous Fe-Based Oxide: A Potential Lithium-Ion Battery Anode Material, ACS Appl. Mater. Interfaces, 2014, 6(8), p 5374–5378

    Article  Google Scholar 

  45. A. Tomić, Economics of the Remediation of the Waste Lakes in Mining by Extraction of the Metal Ions as the Raw Material for Nanotechnology, Graduation Thesis, University of Banja Luka, Faculty of Technology, Banja Luka, 2016.

  46. http://www.sigmaaldrich.com, Product Number 720712.

Download references

Acknowledgments

Authors thank the Ministry of Science and Technology of Republic of Srpska (Grant Number: 19/6-020/966-90/15). The work is also supported by the ArcelorMittal Prijedor through the field safety education and the permission for scientific work inside the company’s mine. The research is performed under the frame of the Memorandum of understanding signed between Shinshu University and University of Banja Luka in 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Gotovac Atlagić.

Additional information

This article is an invited submission to JMEP selected from presentations at the Symposium “Metal-Matrix Composites,” belonging to the topic “Composite and Hybrid Materials” at the European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2015), held September 20-24, 2015, in Warsaw, Poland, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stević, D., Mihajlović, D., Kukobat, R. et al. Hematite Core Nanoparticles with Carbon Shell: Potential for Environmentally Friendly Production from Iron Mining Sludge. J. of Materi Eng and Perform 25, 3121–3127 (2016). https://doi.org/10.1007/s11665-016-1964-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1964-0

Keywords

Navigation