Skip to main content
Log in

Nanopore structure analysis of single wall carbon nanotube xerogels and cryogels

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

We fabricated two types of single wall carbon nanotube (SWCNT) gels prepared by freeze-drying (cryogels) and air-drying (xerogels) from the dispersed SWCNT hydrogels. The comparative pore structure analysis using N2 adsorption at 77 K and H2O adsorption at 298 K was applied to these SWCNT gels. The N2 adsorption isotherms of both SWCNT gels have a steep initial uptake, low-pressure adsorption hysteresis and adsorption hysteresis above P/P0 = 0.9, indicating the presence of pore mouth structures in addition to micropores and mesopores. The mesoporosity of the SWCNT cryogels was about twice higher than that of the SWCNT xerogels, while their microporosities were similar. The H2O adsorption isotherms of both SWCNT gels differ from each other along the whole P/P0 range. The H2O adsorption isotherm of the SWCNT xerogels shows an explicit adsorption below P/P0 = 0.1 and marked low-pressure adsorption hysteresis; the pore mouth volume of the SWCNT xerogels from the initial uptake of H2O was nearly three times larger than that of the SWCNT cryogels. The H2O adsorption isotherms of our SWCNTs gels give similar micropore volumes, being by ≈ 40% larger than that of N2 adsorption isotherms. The excess micropore volume evaluated by H2O adsorption comes from the pore mouth structures in which N2 cannot access. This work demonstrates that H2O adsorption and N2 adsorption analysis are crucial for elucidation of the pore mouth structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Srinivas, G., Krungleviciute, V., Guo, Z.-X., Yildirim, T.: Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 7, 335–342 (2014). https://doi.org/10.1039/C3EE42918K

    Article  CAS  Google Scholar 

  2. Wang, S., Tristan, F., Minami, D., Fujimori, T., Cruz-Silva, R., Terrones, M., Takeuchi, K., Teshima, K., Rodríguez-Reinoso, F., Endo, M., Kaneko, K.: Activation routes for high surface area graphene monoliths from graphene oxide colloids. Carbon 76, 220–231 (2014). https://doi.org/10.1016/j.carbon.2014.04.071

    Article  CAS  Google Scholar 

  3. Barroso-Bogeat, A., Alexandre-Franco, M., Fernández-González, C., Macías-García, A., Gómez-Serrano, V.: Electrical conductivity of activated carbon–metal oxide nanocomposites under compression: a comparison study. Phys. Chem. Chem. Phys. 16, 25161–25175 (2014). https://doi.org/10.1039/C4CP03952A

    Article  CAS  PubMed  Google Scholar 

  4. Futamura, R., Iiyama, T., Takasaki, Y., Gogotsi, Y., Biggs, M.J., Salanne, M., Ségalini, J., Simon, P., Kaneko, K.: Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater. 16, 1225–1232 (2017). https://doi.org/10.1038/nmat4974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Salanne, M., Rotenberg, B., Naoi, K., Kaneko, K., Taberna, P.-L., Grey, C.P., Dunn, B., Simon, P.: Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016). https://doi.org/10.1038/nenergy.2016.70

    Article  CAS  Google Scholar 

  6. Chen, J.P., Wu, S.: Acid/Base-treated activated carbons: characterization of functional groups and metal adsorptive properties. Langmuir 20, 2233–2242 (2004). https://doi.org/10.1021/la0348463

    Article  CAS  PubMed  Google Scholar 

  7. Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Iijima, S., Tanigaki, K., Hiura, H.: Opening carbon nanotubes with oxygen and implications for filling. Nature 362, 522–525 (1993). https://doi.org/10.1038/362522a0

    Article  CAS  Google Scholar 

  8. Kuznetsova, A., Mawhinney, D.B., Naumenko, V., Yates, J.T., Liu, J., Smalley, R.E.: Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chem. Phys. Lett. 321, 292–296 (2000). https://doi.org/10.1016/S0009-2614(00)00341-9

    Article  CAS  Google Scholar 

  9. Tsang, S.C., Harris, P.J.F., Green, M.L.H.: Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature 362, 520–522 (1993). https://doi.org/10.1038/362520a0

    Article  CAS  Google Scholar 

  10. Arai, M., Kanamaru, M., Matsumura, T., Hattori, Y., Utsumi, S., Ohba, T., Tanaka, H., Yang, C.M., Kanoh, H., Okino, F., Touhara, H., Kaneko, K.: Pore characterization of assembly-structure controlled single wall carbon nanotube. Adsorption 13, 509–514 (2007). https://doi.org/10.1007/s10450-007-9055-z

    Article  CAS  Google Scholar 

  11. Collins, P.G., Keith, B., Ishigami, M., Zettl, A.: Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000). https://doi.org/10.1126/science.287.5459.1801

    Article  CAS  PubMed  Google Scholar 

  12. Maniwa, Y., Matsuda, K., Kyakuno, H., Ogasawara, S., Hibi, T., Kadowaki, H., Suzuki, S., Achiba, Y., Kataura, H.: Water-filled single-wall carbon nanotubes as molecular nanovalves. Nat. Mater. 6, 135–141 (2007). https://doi.org/10.1038/nmat1823

    Article  CAS  PubMed  Google Scholar 

  13. Romero, H.E., Bolton, K., Rosén, A., Eklund, P.C.: Atom collision-induced resistivity of carbon nanotubes. Science 307, 89–93 (2005). https://doi.org/10.1126/science.1102004

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, J., Buldum, A., Han, J., Lu, J.P.: Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13, 195–200 (2002). https://doi.org/10.1088/0957-4484/13/2/312

    Article  CAS  Google Scholar 

  15. Zhong, J., Chiou, J., Dong, C., Glans, P.-A., Pong, W.-F., Chang, C., Wu, Z., Guo, J.: Interfacial interaction of gas molecules and single-walled carbon nanotubes. Appl. Phys. Lett. 100, 201605 (2012). https://doi.org/10.1063/1.4718421

    Article  CAS  Google Scholar 

  16. Meyyappan, M.: Carbon nanotube-based chemical sensors. Small 12, 2118–2129 (2016). https://doi.org/10.1002/smll.201502555

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, T., Mubeen, S., Myung, N.V., Deshusses, M.A.: Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19, 332001 (2008). https://doi.org/10.1088/0957-4484/19/33/332001

    Article  CAS  PubMed  Google Scholar 

  18. Honda, H., Yang, C.-M., Kanoh, H., Tanaka, H., Ohba, T., Hattori, Y., Utsumi, S., Kaneko, K.: Choking effect of single-wall carbon nanotubes on solvent adsorption in radial breathing mode. J. Phys. Chem. C 111, 3220–3223 (2007). https://doi.org/10.1021/jp067856w

    Article  CAS  Google Scholar 

  19. Battie, Y., Ducloux, O., Thobois, P., Dorval, N., Lauret, J.S., Attal-Trétout, B., Loiseau, A.: Gas sensors based on thick films of semi-conducting single walled carbon nanotubes. Carbon 49, 3544–3552 (2011). https://doi.org/10.1016/j.carbon.2011.04.054

    Article  CAS  Google Scholar 

  20. Khoerunnisa, F., Morelos-Gomez, A., Tanaka, H., Fujimori, T., Minami, D., Kukobat, R., Hayashi, T., Hong, S.Y., Choi, Y.C., Miyahara, M., Terrones, M., Endo, M., Kaneko, K.: Metal–semiconductor transition like behavior of naphthalene-doped single wall carbon nanotube bundles. Faraday Discuss. 173, 145–156 (2014). https://doi.org/10.1039/C4FD00119B

    Article  CAS  PubMed  Google Scholar 

  21. Kong, J., Frankin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H.: Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000). https://doi.org/10.1126/science.287.5453.622

    Article  CAS  PubMed  Google Scholar 

  22. Snow, E.S., Perkins, F.K., Houser, E.J., Badescu, S.C., Reinecke, T.L.: Chemical detection with a single-walled carbon nanotube capacitor. Science 307, 1942–1945 (2005). https://doi.org/10.1126/science.1109128

    Article  CAS  PubMed  Google Scholar 

  23. Star, A., Joshi, V., Skarupo, S., Thomas, D., Gabriel, J.-C.P.: Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B 110, 21014–21020 (2006). https://doi.org/10.1021/jp064371z

    Article  CAS  PubMed  Google Scholar 

  24. Dumlich, H., Gegg, M., Hennrich, F., Reich, S.: Bundle and chirality influences on properties of carbon nanotubes studied with van der Waals density functional theory. Phys. Status Solidi 248, 2589–2592 (2011). https://doi.org/10.1002/pssb.201100212

    Article  CAS  Google Scholar 

  25. Khoerunnisa, F., Fujimori, T., Itoh, T., Urita, K., Hayashi, T., Kanoh, H., Ohba, T., Hong, S.Y., Choi, Y.C., Santosa, S.J., Endo, M., Kaneko, K.: Enhanced CO2 adsorptivity of partially charged single walled carbon nanotubes by methylene blue encapsulation. J. Phys. Chem. C 116, 11216–11222 (2012). https://doi.org/10.1021/jp303630m

    Article  CAS  Google Scholar 

  26. Hu, G., Cheng, M., Ma, D., Bao, X.: Synthesis of carbon nanotube bundles with mesoporous structure by a self-assembly solvothermal route. Chem. Mater. 15, 1470–1473 (2003). https://doi.org/10.1021/cm0209362

    Article  CAS  Google Scholar 

  27. Kim, D.Y., Yang, C.-M., Noguchi, H., Yamamoto, M., Ohba, T., Kanoh, H., Kaneko, K.: Enhancement of H2 and CH4 adsorptivities of single wall carbon nanotubes produced by mixed acid treatment. Carbon 46, 611–617 (2008). https://doi.org/10.1016/j.carbon.2008.01.008

    Article  CAS  Google Scholar 

  28. Yang, C.-M., Kim, D.Y., Lee, Y.H.: Formation of densely packed single-walled carbon nanotube assembly. Chem. Mater. 17, 6422–6429 (2005). https://doi.org/10.1021/cm0507157

    Article  CAS  Google Scholar 

  29. Kamijyou, Y., Stevic, D., Kukobat, R., Urita, K., Chotimah, N., Hattori, Y., Futamura, R., Vallejos-Burgos, F., Moriguchi, I., Utsumi, S., Sakai, T., Kaneko, K.: Mesoscopic cage-like structured single-wall carbon nanotube cryogels. Microporous Mesoporous Mater. 293, 109814 (2020). https://doi.org/10.1016/j.micromeso.2019.109814

    Article  CAS  Google Scholar 

  30. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  31. Kobori, R., Ohba, T., Suzuki, T., Iiyama, T., Ozeki, S., Inagaki, M., Nakamura, A., Kawai, M., Kanoh, H., Kaneko, K.: Fine pore mouth structure of molecular sieve carbon with GCMC-assisted supercritical gas adsorption analysis. Adsorption 15, 114–122 (2009). https://doi.org/10.1007/s10450-009-9162-0

    Article  CAS  Google Scholar 

  32. Ohba, T., Kanoh, H., Kaneko, K.: Affinity transformation from hydrophilicity to hydrophobicity of water molecules on the basis of adsorption of water in graphitic nanopores. J. Am. Chem. Soc. 126, 1560–1562 (2004). https://doi.org/10.1021/ja038842w

    Article  CAS  PubMed  Google Scholar 

  33. Ohba, T., Kanoh, H., Kaneko, K.: Structures and stability of water nanoclusters in hydrophobic nanospaces. Nano Lett. 5, 227–230 (2005). https://doi.org/10.1021/nl048327b

    Article  CAS  PubMed  Google Scholar 

  34. Thommes, M., Morell, J., Cychosz, K.A., Fröba, M.: Combining nitrogen, argon, and water adsorption for advanced characterization of ordered mesoporous carbons (CMKs) and periodic mesoporous organosilicas (PMOs). Langmuir 29, 14893–14902 (2013). https://doi.org/10.1021/la402832b

    Article  CAS  PubMed  Google Scholar 

  35. Silvestre-Albero, J., Silvestre-Albero, A., Rodríguez-Reinoso, F., Thommes, M.: Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4K), carbon dioxide (273K) and argon (87.3K) adsorption in combination with immersion calorimetry. Carbon 50, 3128–3133 (2012). https://doi.org/10.1016/j.carbon.2011.09.005

    Article  CAS  Google Scholar 

  36. Kukobat, R., Minami, D., Hayashi, T., Hattori, Y., Matsuda, T., Sunaga, M., Bharti, B., Asakura, K., Kaneko, K.: Sol–gel chemistry mediated Zn/Al-based complex dispersant for SWCNT in water without foam formation. Carbon 94, 518–523 (2015). https://doi.org/10.1016/j.carbon.2015.07.025

    Article  CAS  Google Scholar 

  37. Kaneko, K., Ishii, C.: Superhigh surface area determination of microporous solids. Colloids Surf. 67, 203–212 (1992). https://doi.org/10.1016/0166-6622(92)80299-H

    Article  CAS  Google Scholar 

  38. Kaneko, K., Ishii, C., Ruike, M., Kuwabara, H.: Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon 30, 1075–1088 (1992). https://doi.org/10.1016/0008-6223(92)90139-N

    Article  CAS  Google Scholar 

  39. Marsh, H.: Adsorption methods to study microporosity in coals and carbons—a critique. Carbon 25, 49–58 (1987). https://doi.org/10.1016/0008-6223(87)90039-X

    Article  CAS  Google Scholar 

  40. Ohba, T., Kaneko, K.: GCMC study on relationship between DR plot and micropore width distribution of carbon. Langmuir 17, 3666–3670 (2001). https://doi.org/10.1021/la001463l

    Article  CAS  Google Scholar 

  41. Neimark, A.V., Lin, Y., Ravikovitch, P.I., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617–1628 (2009). https://doi.org/10.1016/j.carbon.2009.01.050

    Article  CAS  Google Scholar 

  42. Jorio, A., Pimenta, M.A., Filho, A.G.S., Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Characterizing carbon nanotube samples with resonance Raman scattering. New J. Phys. 5, 139–139 (2003). https://doi.org/10.1088/1367-2630/5/1/139

    Article  Google Scholar 

  43. Silvestre-Albero, A.M., Juárez-Galán, J.M., Silvestre-Albero, J., Rodríguez-Reinoso, F.: Low-pressure hysteresis in adsorption: an artifact? J. Phys. Chem. C 116, 16652–16655 (2012). https://doi.org/10.1021/jp305358y

    Article  CAS  Google Scholar 

  44. Stevic, D., Furuse, A., Vallejos-Burgos, F., Kukobat, R., Kaneko, K.: Cu-phthalocyanine-mediated nanowindow production on single-wall carbon nanohorn. Mol. Phys. (2020). https://doi.org/10.1080/00268976.2020.1815883

    Article  Google Scholar 

  45. Setoyama, N., Suzuki, T., Kaneko, K.: Simulation study on the relationship between a high resolution αs-plot and the pore size distribution for activated carbon. Carbon 36, 1459–1467 (1998). https://doi.org/10.1016/S0008-6223(98)00138-9

    Article  CAS  Google Scholar 

  46. Wang, S., Vallejos-Burgos, F., Furuse, A., Yoshikawa, Y., Tanaka, H., Kaneko, K.: The subtracting pore effect method for an accurate and reliable surface area determination of porous carbons. Carbon 175, 77–86 (2021). https://doi.org/10.1016/j.carbon.2020.12.075

    Article  CAS  Google Scholar 

  47. Kaneko, K., Hanzawa, Y., Iiyama, T., Kanda, T., Suzuki, T.: Cluster-mediated water adsorption on carbon nanopores. Adsorption 5, 7–13 (1999). https://doi.org/10.1023/A:1026471819039

    Article  CAS  Google Scholar 

  48. Miyawaki, J., Kanda, T., Kaneko, K.: Hysteresis-associated pressure-shift-induced water adsorption in carbon micropores. Langmuir 17, 664–669 (2001). https://doi.org/10.1021/la000175m

    Article  CAS  Google Scholar 

  49. Vallejos-Burgos, F., Coudert, F.-X., Kaneko, K.: Air separation with graphene mediated by nanowindow-rim concerted motion. Nat. Commun. 9, 1812 (2018). https://doi.org/10.1038/s41467-018-04224-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakamura, M., Ohba, T., Branton, P., Kanoh, H., Kaneko, K.: Equilibration-time and pore-width dependent hysteresis of water adsorption isotherm on hydrophobic microporous carbons. Carbon 48, 305–308 (2010). https://doi.org/10.1016/j.carbon.2009.09.008

    Article  CAS  Google Scholar 

  51. Rouquerol, J., Rouquerol, F., Sing, K.S.W., Llewellyn, P., Maurin, G.: Adsorption by powders and porous solids, principles, methhodology and applications. Academic Press, Cambridge (2014)

    Google Scholar 

  52. Ohba, T.: Size-dependent water structures in carbon nanotubes. Angew. Chemie Int. Ed. 53, 8032–8036 (2014). https://doi.org/10.1002/anie.201403839

    Article  CAS  Google Scholar 

  53. Futamura, R., Iiyama, T., Hamasaki, A., Ozeki, S.: Negative thermal expansion of water in hydrophobic nanospaces. Phys. Chem. Chem. Phys. 14, 981–986 (2012). https://doi.org/10.1039/C1CP22954K

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JST-OPERA program (JPMJOP 1722). KK was greatly stimulated by adsorption science studies by Dr. Shivaji Sircar when KK started his adsorption research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumi Kaneko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 520 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamijyou, Y., Kukobat, R., Sakai, T. et al. Nanopore structure analysis of single wall carbon nanotube xerogels and cryogels. Adsorption 27, 673–681 (2021). https://doi.org/10.1007/s10450-021-00315-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-021-00315-x

Keywords

Navigation