Skip to main content

Employing Cellular Automata for Shaping Accurate Morphology Maps Using Scattered Data from Robotics’ Missions

  • Chapter
  • First Online:
Book cover Robots and Lattice Automata

Abstract

Accurate maps are essential in the case of robot teams, so that they can operate autonomously and accomplish their tasks efficiently. In this work we present an approach which allows the generation of detailed maps, suitable for robot navigation, from a mesh of sparse points using Cellular Automata and simple evolutions rules. The entire map area can be considered as a 2D Cellular Automaton (CA) where the value at each CA cell represents the height of the ground in the corresponding coordinates. The set of measurements form the original state of the CA. The CA rules are responsible for generating the intermediate heights among the real measurements. The proposed method can automatically adjust its rules, so as to encapture local morphological attributes, using a pre-processing procedure in the set of measurements. The main advantage of the proposed approach is the ability to maintain an accurately reconstruction even in cases where the number of measurements are significant reduced. Experiments have been conducted employing data collected from two totally different real-word environments. In the first case the proposed approach is applied, so as to build a detailed map of a large unknown underwater area in Oporto, Portugal. The second case concerns data collected by a team of aerial robots in real experiments in an area near Zurich, Switzerland and is also used for the evaluation of the approach. The data collected, in the two aforementioned cases, are extracted using different kind of sensors and robots, thus demonstrating the applicability of our approach in different kind of devices. The proposed method outperforms the performance of other well-known methods in literature thus enabling its application for real robot navigation.

The research leading to these results has received funding from the European Communities Seventh Framework Programme (FP7/2007–2013) under grant agreements n. 270180 (NOPTILUS)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will assume that the robot’s measurements are filtered and free of bias/Gaussian noise. It has to be emphasized that the proposed approach can be extended to deal with noisy data giving weights about the confidence level of the measurement’s accuracy.

  2. 2.

    Note that now and in the next experiments there has not been any analysis about the distribution that is followed by the measurements. Different modalities, like different number of robots or different type of sensors, etc., will lead to a different data distribution. The above problem is tackled by conducted the same experiment 500 times with the initial measurements stochastically changed and keep the average of error.

References

  1. Gasca, M., Sauer, T.: Polynomial interpolation in several variables. Adv. Comput. Math. 12(4), 377–410 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lehmann, T.M., Gonner, C., Spitzer, K.: Survey: Interpolation methods in medical image processing. Med. Imaging IEEE Trans. 18(11), 1049–1075 (1999)

    Google Scholar 

  3. Franke, R., Nielson, G.M.: Scattered data interpolation and applications: a tutorial and survey. In: Geometric Modeling, pp. 131–160. Springer, Berlin (1991)

    Google Scholar 

  4. Thorsten, L., Michael, H., Wuensche, H.-J.: Autonomous ground vehicles concepts and a path to the future. Proc. IEEE 100(13), 1831–1839 (2012)

    Google Scholar 

  5. Achtelik, M., Achtelik, M., Brunet, Y., Chli, M., Chatzichristofis, S.A.., Decotignie, J-D., Doth, K-M., Fraundorfer, F., Kneip, L., Gurdan, D., Heng, L., Kosmatopoulos, E.B., Doitsidis, L., Lee, G.H., Lynen, S., Martinelli, A., Meier, L., Pollefeys, M., Piguet, D., Renzaglia, A., Scaramuzza, D., Siegwart, R., Stumpf, J., Tanskanen, P., Troiani, C., Weiss. S.: Sfly: swarm of micro flying robots. In: IROS, pp. 2649–2650. IEEE (2012)

    Google Scholar 

  6. Birk, A., Pfingsthorn, M., BĂĽlow, H.: Advances in underwater mapping and their application potential for safety, security, and rescue robotics. In: IEEE International Symposium on Safety, Security, Rescue Robotics (SSRR). IEEE Press (2012)

    Google Scholar 

  7. Michael, N., Shaojie, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Nagatani, K., Okada, Y., Kiribayashi, S., Otake, K., Yoshida, K., Ohno, K., Takeuchi, E., Tadokoro, S.: Collaborative mapping of an earthquake-damaged building via ground and aerial robots. J. Field Robot. 29(5), 832–841 (2012)

    Article  Google Scholar 

  8. Blosch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based MAV navigation in unknown and unstructured environments. In: IEEE International Conference on Robotics and Automation (ICRA), 2010, pp. 21–28. IEEE (2010)

    Google Scholar 

  9. Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H., Meier, L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor mav. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012, pp. 4557–4564. IEEE (2012)

    Google Scholar 

  10. Majdik, A., Albers-Schoenberg, Y., Scaramuzza, D.: MAV urban localization from google street view data. In: IROS, pp. 3979–3986 (2013)

    Google Scholar 

  11. Doitsidis, L., Weiss, S., Renzaglia, A., Achtelik, M.W., Kosmatopoulos, E.B., Siegwart, R., Scaramuzza, D.: Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision. Auton. Robots 33(1–2), 173–178 (2012)

    Article  Google Scholar 

  12. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Adhoc Netw. 3(3), 257–279 (2005)

    Google Scholar 

  13. Kapoutsis, A.Ch., Chatzichristofis, S.A., Doitsidis, L., Borges de Sousa, J., Kosmatopoulos, E.B.: Autonomous navigation of teams of unmanned aerial or underwater vehicles for exploration of unknown static & dynamic environments. In: 21st Mediterranean Conference on Control & Automation (MED), 2013, pp. 1181–1188. IEEE (2013)

    Google Scholar 

  14. Bohling, G.: Introduction to Geostatistics and Variogram Analysis, p. 20. Kansas Geological Survey, Kansas (2005)

    Google Scholar 

  15. Ripley, B.D.: Spatial Statistics, vol. 575. Wiley.com, New York (2005)

    Google Scholar 

  16. Webster, R., Oliver, M.A.: Geostatistics for Environmental Scientists. Wiley, Chichester (2007)

    Google Scholar 

  17. Christopher, C.M., Condal, A.R.: A spatial data structure integrating GIS and simulation in a marine environment. Mar. Geodesy 18(3), 213–228 (1995)

    Article  Google Scholar 

  18. Burrough, P.A.: Principles of Geographical Information Systems for Land Resources Assessment (1986)

    Google Scholar 

  19. Charalampous, K., Amanatiadis, A., Gasteratos, A.: Efficient robot path planning in the presence of dynamically expanding obstacles. In: ACRI, volume 7495 of Lecture Notes in Computer Science, pp. 330–339. Springer (2012)

    Google Scholar 

  20. Ioannidis, K., Sirakoulis, GCh., Andreadis, I.: Cellular automata-based architecture for cooperative miniature robots. J. Cell. Autom. 8(1–2), 91–111 (2013)

    MathSciNet  Google Scholar 

  21. Chatzichristofis, S.A., Mitzias, D.A., Sirakoulis, GCh., Boutalis, Y.S.: A novel cellular automata based technique for visual multimedia content encryption. Opt. Commun. 283(21), 4250–4260 (2010)

    Article  Google Scholar 

  22. Zagoris, K., Pratikakis, I.: Scene text detection on images using cellular automata. In: ACRI, pp. 514–523 (2012)

    Google Scholar 

  23. Georgoudas, I.G., Sirakoulis, GCh., Scordilis, E.M., Andreadis, I.: A cellular automaton simulation tool for modelling seismicity in the region of Xanthi. Environ. Modell. Softw. 22(10), 1455–1464 (2007)

    Article  Google Scholar 

  24. Von Neumann, J., Burks, A.W., et al.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)

    Google Scholar 

  25. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, New York (1998)

    Google Scholar 

  26. Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Phys. D Nonlinear Phenom. 10(1–2), 117–127 (1984)

    Google Scholar 

  27. Bialynicki-Birula, I.: Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D 49(12), 6920–6927 (1994)

    Article  MathSciNet  Google Scholar 

  28. Omohundro, S.: Modelling cellular automata with partial differential equations. Phys. D Nonlinear Phenom. 10(1–2), 128–134 (1984)

    Google Scholar 

  29. Malamud, B.D., Turcotte, D.L.: Cellular-automata models applied to natural hazards. Comput. Sci. Eng. 2(3), 42–51 (2000)

    Article  Google Scholar 

  30. Sirakoulis, GCh., Karafyllidis, I., Mardiris, V., Thanailakis, A.: Study of lithography profiles developed on non-planar Si surfaces. Nanotechnology 10, 421–427 (1999)

    Article  Google Scholar 

  31. Sirakoulis, GCh., Karafyllidis, I., Thanailakis, A.: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecol. Modell. 133(3), 209–223 (2000)

    Article  Google Scholar 

  32. Sirakoulis, GCh., Karafyllidis, I., Thanailakis, A., Mardiris, V.: A methodology for VLSI implementation of cellular automata algorithms using VHDL. Adv. Eng. Softw. 32(3), 189–202 (2000)

    Article  Google Scholar 

  33. Sirakoulis, GCh., Karafyllidis, I., Thanailakis, A.: A CAD system for the construction and VLSI implementation of cellular automata algorithms using VHDL. Microprocess. Microsyst. 27(8), 381–396 (2003)

    Article  Google Scholar 

  34. Sirakoulis, GCh.: A TCAD system for VLSI implementation of the CVD process using VHDL. Integr. VLSI J. 37(1), 63–81 (2004)

    Article  Google Scholar 

  35. Mardiris, V., Sirakoulis, GCh., Mizas, Ch., Karafyllidis, I., Thanailakis, A.: A CAD system for modeling and simualtion of computer networks using cellular automata. IEEE Trans. SMC-Part C 38(2), 1–12 (2008)

    Google Scholar 

  36. Glynn, J., de Moustier, C., Huff, L.: Survey operations and results using a Klein 5410 bathymetric sidescan sonar. In: US Hydro (2007)

    Google Scholar 

  37. Weiss, S., Achtelik, M., Kneip, L., Scaramuzza, D., Siegwart, R.: Intuitive 3D maps for MAV terrain exploration and obstacle avoidance. J. Intell. Robot. Syst. 61(1–4), 473–493 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Ch. Kapoutsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kapoutsis, A.C., Chatzichristofis, S.A., Sirakoulis, G.C., Doitsidis, L., Kosmatopoulos, E.B. (2015). Employing Cellular Automata for Shaping Accurate Morphology Maps Using Scattered Data from Robotics’ Missions. In: Sirakoulis, G., Adamatzky, A. (eds) Robots and Lattice Automata. Emergence, Complexity and Computation, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-10924-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10924-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10923-7

  • Online ISBN: 978-3-319-10924-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics