Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modular activation of Rho1 by GPCR signalling imparts polarized myosin II activation during morphogenesis

Abstract

Polarized cell shape changes during tissue morphogenesis arise by controlling the subcellular distribution of myosin II. For instance, during Drosophila melanogaster gastrulation, apical constriction and cell intercalation are mediated by medial–apical myosin II pulses that power deformations, and polarized accumulation of myosin II that stabilizes these deformations. It remains unclear how tissue-specific factors control different patterns of myosin II activation and the ratchet-like myosin II dynamics. Here we report the function of a common pathway comprising the heterotrimeric G proteins Gα12/13, Gβ13F and Gγ1 in activating and polarizing myosin II during Drosophila gastrulation. Gα12/13 and the Gβ13F/γ1 complex constitute distinct signalling modules, which regulate myosin II dynamics medial–apically and/or junctionally in a tissue-dependent manner. We identify a ubiquitously expressed GPCR called Smog required for cell intercalation and apical constriction. Smog functions with other GPCRs to quantitatively control G proteins, resulting in stepwise activation of myosin II and irreversible cell shape changes. We propose that GPCR and G proteins constitute a general pathway for controlling actomyosin contractility in epithelia and that the activity of this pathway is polarized by tissue-specific regulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterotrimeric G proteins control MyoII dynamics in the mesoderm and ectoderm.
Figure 2: RhoGEF2 is required for apical–medial MyoII in the ectoderm and acts downstream of 12/13.
Figure 3: The ubiquitously expressed GPCR Smog and G proteins are required for both mesoderm constriction and ectoderm elongation.
Figure 4: The Fog ligand requires at least two GPCRs, Smog and Mist, for apical MyoII accumulation in the mesoderm.
Figure 5: Smog is required in the ectoderm for MyoII distribution and contributes to Fog signalling.
Figure 6: Smog controls Rok and Rho1 distribution in the ectoderm and mild inhibition of Rok mimics the effects of smog or mist knockdown in the mesoderm.

Similar content being viewed by others

References

  1. Guillot, C. & Lecuit, T. Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340, 1185–1189 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Heisenberg, C. P. & Bellaiche, Y. Forces in tissue morphogenesis and patterning. Cell 153, 948–962 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Leptin, M. & Grunewald, B. Cell shape changes during gastrulation in Drosophila. Development 110, 73–84 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Sweeton, D., Parks, S., Costa, M. & Wieschaus, E. Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development 112, 775–789 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Dawes-Hoang, R. E. et al. Folded gastrulation, cell shape change and the control of myosin localization. Development 132, 4165–4178 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Martin, A. C. & Goldstein, B. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development 141, 1987–1998 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walck-Shannon, E. & Hardin, J. Cell intercalation from top to bottom. Nat. Rev. Mol. Cell Biol. 15, 34–48 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Blankenship, J. T., Backovic, S. T., Sanny, J. S., Weitz, O. & Zallen, J. A. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11, 459–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Irvine, K. D. & Wieschaus, E. Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 120, 827–841 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Sherrard, K., Robin, F., Lemaire, P. & Munro, E. Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination. Curr. Biol. 20, 1499–1510 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rozbicki, E. et al. Myosin-II-mediated cell shape changes and cell intercalation contribute to primitive streak formation. Nat. Cell Biol. 17, 397–408 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nishimura, T., Honda, H. & Takeichi, M. Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149, 1084–1097 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto, H., Robin, F. B., Sherrard, K. M. & Munro, E. M. Sequential contraction and exchange of apical junctions drives zippering and neural tube closure in a simple chordate. Dev. Cell 32, 241–255 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Munjal, A. & Lecuit, T. Actomyosin networks and tissue morphogenesis. Development 141, 1789–1793 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Roh-Johnson, M. et al. Triggering a cell shape change by exploiting preexisting actomyosin contractions. Science 335, 1232–1235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Solon, J., Kaya-Copur, A., Colombelli, J. & Brunner, D. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342 (2009).

    Article  PubMed  Google Scholar 

  18. He, L., Wang, X., Tang, H. L. & Montell, D. J. Tissue elongation requires oscillating contractions of a basal actomyosin network. Nat. Cell Biol. 12, 1133–1142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mason, F. M. & Martin, A. C. Tuning cell shape change with contractile ratchets. Curr. Opin. Genet. Dev. 21, 671–679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457, 495–499 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Rauzi, M., Lenne, P. F. & Lecuit, T. Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468, 1110–1114 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Munjal, A., Philippe, J. M., Munro, E. & Lecuit, T. A self-organized biomechanical network drives shape changes during tissue morphogenesis. Nature 524, 351–355 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Simoes Sde, M. et al. Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev. Cell 19, 377–388 (2010).

    Article  PubMed  CAS  Google Scholar 

  24. Mason, F. M., Tworoger, M. & Martin, A. C. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction. Nat. Cell Biol. 15, 926–936 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simoes Sde, M., Mainieri, A. & Zallen, J. A. Rho GTPase and Shroom direct planar polarized actomyosin contractility during convergent extension. J. Cell Biol. 204, 575–589 (2014).

    Article  PubMed  CAS  Google Scholar 

  26. Kasza, K. E., Farrell, D. L. & Zallen, J. A. Spatiotemporal control of epithelial remodeling by regulated myosin phosphorylation. Proc. Natl Acad. Sci. USA 111, 11732–11737 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vasquez, C. G., Tworoger, M. & Martin, A. C. Dynamic myosin phosphorylation regulates contractile pulses and tissue integrity during epithelial morphogenesis. J. Cell Biol. 206, 435–450 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buchsbaum, R. J. Rho activation at a glance. J. Cell Sci. 120, 1149–1152 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Li, X. et al. Gpr125 modulates Dishevelled distribution and planar cell polarity signaling. Development 140, 3028–3039 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ackerman, S. D., Garcia, C., Piao, X., Gutmann, D. H. & Monk, K. R. The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA. Nat. Commun. 6, 6122 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Wu, S. Y., Shin, J., Sepich, D. S. & Solnica-Krezel, L. Chemokine GPCR signaling inhibits β-catenin during zebrafish axis formation. PLoS Biol. 10, e1001403 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zallen, J. A. & Wieschaus, E. Patterned gene expression directs bipolar planar polarity in Drosophila. Dev. Cell 6, 343–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Pare, A. C. et al. A positional Toll receptor code directs convergent extension in Drosophila. Nature 515, 523–527 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Costa, M., Wilson, E. T. & Wieschaus, E. A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation. Cell 76, 1075–1089 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Manning, A. J. & Rogers, S. L. The Fog signaling pathway: insights into signaling in morphogenesis. Dev. Biol. 394, 6–14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Manning, A. J., Peters, K. A., Peifer, M. & Rogers, S. L. Regulation of epithelial morphogenesis by the G protein-coupled receptor mist and its ligand fog. Sci. Signal. 6, ra98 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Parks, S. & Wieschaus, E. The Drosophila gastrulation gene concertina encodes a G α-like protein. Cell 64, 447–458 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Kolsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 315, 384–386 (2007).

    Article  PubMed  CAS  Google Scholar 

  39. Fox, D. T. & Peifer, M. Abelson kinase (Abl) and RhoGEF2 regulate actin organization during cell constriction in Drosophila. Development 134, 567–578 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Nikolaidou, K. K. & Barrett, K. A Rho GTPase signaling pathway is used reiteratively in epithelial folding and potentially selects the outcome of Rho activation. Curr. Biol. 14, 1822–1826 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Oldham, W. M. & Hamm, H. E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Hanlon, C. D. & Andrew, D. J. Outside-in signaling—a brief review of GPCR signaling with a focus on the Drosophila GPCR family. J. Cell Sci. 128, 3533–3542 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang, J., Zhou, W., Dong, W., Watson, A. M. & Hong, Y. From the Cover: directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc. Natl Acad. Sci. USA 106, 8284–8289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martin, A. C., Gelbart, M., Fernandez-Gonzalez, R., Kaschube, M. & Wieschaus, E. F. Integration of contractile forces during tissue invagination. J. Cell Biol. 188, 735–749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fuse, N., Yu, F. & Hirose, S. Gprk2 adjusts Fog signaling to organize cell movements in Drosophila gastrulation. Development 140, 4246–4255 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Mathew, S. J., Kerridge, S. & Leptin, M. A small genomic region containing several loci required for gastrulation in Drosophila. PLoS ONE 4, e7437 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gong, W. J. & Golic, K. G. Ends-out, or replacement, gene targeting in Drosophila. Proc. Natl Acad. Sci. USA 100, 2556–2561 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morize, P., Christiansen, A. E., Costa, M., Parks, S. & Wieschaus, E. Hyperactivation of the folded gastrulation pathway induces specific cell shape changes. Development 125, 589–597 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, Z. et al. Activation of p115-RhoGEF requires direct association of Gα13 and the Dbl homology domain. J. Biol. Chem. 287, 25490–25500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Izumi, Y., Ohta, N., Itoh-Furuya, A., Fuse, N. & Matsuzaki, F. Differential functions of G protein and Baz-aPKC signaling pathways in Drosophila neuroblast asymmetric division. J. Cell Biol. 164, 729–738 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kanesaki, T., Hirose, S., Grosshans, J. & Fuse, N. Heterotrimeric G protein signaling governs the cortical stability during apical constriction in Drosophila gastrulation. Mech. Dev. 130, 132–142 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Ni, J. Q. et al. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat. Methods 8, 405–407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bardet, P. L. et al. PTEN controls junction lengthening and stability during cell rearrangement in epithelial tissue. Dev. Cell 25, 534–546 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Schaefer, M., Petronczki, M., Dorner, D., Forte, M. & Knoblich, J. A. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107, 183–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Hacker, U. & Perrimon, N. DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev. 12, 274–284 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chou, T. B. & Perrimon, N. Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131, 643–653 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Zinn (Caltech, USA), N. Fuse (Kyoto, Japan), J. Knoblich (IMBA, Austria), M. Leptin (Cologne, Germany), A. Martin (MIT, USA), V. Mirouse (Clermont, USA), E. Wieschaus (Princeton, USA), J. Zallen (Sloan-Kettering, USA), the Drosophila Genetic Resource Center and the Bloomington Stock Center for the gift of flies. A. Ratnaparkhi (IISER, India) provided plasmids. We thank D. Coiffier for the in situ hybridization shown in Supplementary Fig. 3e. This work benefited greatly from the stimulating discussions in the Lecuit and Lenne laboratories and from the Labex INFORM ((ANR-11-LABX-0054) under the AMIDEX program (ANR-11-IDEX-0001-02)). This work was financially supported by the ERC (Biomecamorph no. 323027), the ANR Archiplast (Programme Blanc) and the CNRS (S.K. and T.L.). A.M. was supported by the Ministère de l’Education nationale and the Association pour la Recherche contre le Cancer (ARC). This work was performed using the France-BioImaging infrastructure supported by the Agence Nationale de la Recherche (ANR-10-INSB-04-01, call ‘Investissements d’Avenir’).

Author information

Authors and Affiliations

Authors

Contributions

S.K. and T.L. planned the project. S.K., A.M. and T.L. analysed the data. S.K. discovered smog and performed the experiments shown in Figs 1, 35 and Supplementary Figs 1, and 3 and 4. A.M. carried out the experiments in Figs 46 and the quantifications of Figs 1 and 46. A.G.d.l.B. performed the experiments in Fig. 2 and Supplementary Fig. 2. A.J. carried out the experiments and quantifications in Supplementary Figs 4 and 5. J.-M.P. made the constructs, cloning and molecular characterization of smog. A.J.S. provided unpublished materials and technical expertise for the S2 cell experiments (Supplementary Fig. 4). S.K., A.M. and T.L. wrote the paper. All authors commented on the manuscript.

Corresponding authors

Correspondence to Stephen Kerridge or Thomas Lecuit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 2 Gβ13F is required for apical MyoII accumulation.

MyoII in control and Gβ13F mutant mesoderm (a) and ectoderm (b). Scale bars 10 μm (a) and 5 μm (b).

Supplementary Figure 3 RhoGEF affects elongation.

Embryos showing elongation defects in mutant RhoGEF2 and RNAi compared to controls (a). Arrow heads point to the dorsal edge of posterior midgut at indicated times and red lines highlight the extent of elongation at indicated time. Note the folds in ectoderm (white arrows) (b) MyoII::GFP levels in controls and RhoGEF2 over-expression (c) MyoII::GFP levels in 12/13QL303 plus RhoGEF4 RNAi (right panel compared to 12/13QL303 (left) and 12/13QL303 plus rhoGEF2 RNAi (middle). Scale bars 100 μm (a) and 5 μm (b).

Supplementary Figure 4 Smog gene structure, knock out and RNAi probe.

(a) CG31660 gene structure encoding for Smog. Red boxes: coding exons, blue boxes: 5′ and3′ non coding exons. The predicted 7 pass transmembrane regions are depicted above. Smog disrupting dsRNA probe below in brown. The deleted portion of the knockout of smog between red lines. (b) Real time QPCR using gDNA showing that smog knock out lacks the WT locus (see Materials and Methods); n = 3 independent experiments. (c) RT-QPCR showing the specific absence of mRNAs transcribed from the smog knock out. (see Materials and Methods); n = 3 independent experiments. Error bars are Standard Error of Mean.

Supplementary Figure 5 Fog induces endocytosis of Smog and is immobilized on heterologous cells expressing Smog::GFP.

(a) partial rescue of the smog elongation phenotype by sqh-driven production of Smog and Smog::GFP. (b) Functional Smog::GFP is detected at the surface of epithelial cells: top orthogonal view lower panels single planes (c) Smog::GFP is also detected in intracellular organelles in mesoderm cells (left top, arrowheads). Loss of zygotic Fog reduces Smog::GFP positive organelles in mesoderm cells (top right) prior to constriction (d) Smog::GFP (green) is detected together with extracellular-injected dextran (magenta) at the surface and in intracellular organelles in the ectoderm during intercalation (top panel). Overexpression of Fog increases intracellular Smog::GFP positive organelles (bottom panel, quantified in (g) where n = number of embryos and is p < 0.000005). Vesicle sizes are often larger in cells over-expressing Fog (d enlarged in right panels). (e) Fog (red) is immobilised on the surface of S2 cells expressing Smog::GFP (green); quantified in (f) n = 68 (GFP positive) and 95 (GFP negative) cells. Error bars are Standard Error of Mean. Scale bars 5 μm.

Supplementary Figure 6 Smog is required for apical accumulation of Rok and Rho1 in the mesoderm.

Ubi-Rok::GFP (a) and Rho biosensor::GFP distribution in mesoderm cells at indicated times in control and smog mutants. Scale bars 5 μm.

Supplementary Figure 7 Models for modular and quantitative control of MyoII activation.

Localised inputs derive from striped ectoderm (orange) and ventral mesoderm (purple) expressed transcription factors in blastoderm embryos (top). Mesoderm and endoderm patterning relies on Fog and possibly other ligands signalling via multiple, localised (e.g. Mist) or ubiquitous (e.g. Smog) GPCRs, which relay information to G proteins α,β andγ. T48 and Tolls are single pass transmembrane proteins.

Supplementary Table 1 Summary of genotypes employed.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2692 kb)

Developing mesoderm in control and Gγ1 mutant.

MyoII::Cherry (magenta) and E-cadherin::GFP (green); Scale = 5 μm. (MOV 1663 kb)

Developing mesoderm in control and Gα12/13 mutant.

MyoII::Cherry (magenta) and E-cadherin::GFP (green); Scale = 5 μm. (MOV 4069 kb)

Developing mesoderm in control and Gαβ13F mutant.

MyoII::Cherry (magenta) and E-cadherin::GFP (green); Scale = 5 μm. (MOV 8753 kb)

Developing ectoderm in control and Gγ1 mutant.

MyoII::Cherry (magenta) and E-cadherin::GFP (green) on left and MyoII::Cherry on right; Scale = 5 μm. (MOV 12798 kb)

Developing ectoderm in control and Gα12/13 mutant.

MyoII::Cherry (magenta) and E-cadherin::GFP (green) on left and MyoII::Cherry on right; Scale = 5 μm. (MOV 5888 kb)

Developing ectoderm in control and Gβ13F mutant.

MyoII::Cherry (magenta) and E-cadherin::GFP (green) on left and MyoII::Cherry on right; Scale = 5 μm. (MOV 8642 kb)

Developing mesoderm in control, smog RNAi, mist RNAi and smog + mist double RNAi embryos.

MyoII::Cherry (magenta) and E-cadherin::GFP (green); Scale = 5 μm. (MOV 19912 kb)

Developing mesoderm in control, fog RNAi, mist + fog RNAi and smog + fog double RNAi embryos.

MyoII::Cherry (magenta) and E-cadherin::GFP (green); Scale = 5 μm. (MOV 17525 kb)

Developing ectoderm in control and smog mutant.

MyoII::Cherry (magenta) and E-cadherin::GFP (green) on left and MyoII::Cherry on right; Scale = 5 μm. (MOV 5392 kb)

Developing mesoderm in control, H1152 5 mM and H1152 10 mM injected embryos.

MyoII::Cherry (green) and E-cadherin::GFP (purple); Scale = 5 μm. (MOV 8636 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerridge, S., Munjal, A., Philippe, JM. et al. Modular activation of Rho1 by GPCR signalling imparts polarized myosin II activation during morphogenesis. Nat Cell Biol 18, 261–270 (2016). https://doi.org/10.1038/ncb3302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing