skip to main content
10.1145/2702123.2702391acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

iSkin: Flexible, Stretchable and Visually Customizable On-Body Touch Sensors for Mobile Computing

Authors Info & Claims
Published:18 April 2015Publication History

ABSTRACT

We propose iSkin, a novel class of skin-worn sensors for touch input on the body. iSkin is a very thin sensor overlay, made of biocompatible materials, and is flexible and stretchable. It can be produced in different shapes and sizes to suit various locations of the body such as the finger, forearm, or ear. Integrating capacitive and resistive touch sensing, the sensor is capable of detecting touch input with two levels of pressure, even when stretched by 30% or when bent with a radius of 0.5cm. Furthermore, iSkin supports single or multiple touch areas of custom shape and arrangement, as well as more complex widgets, such as sliders and click wheels. Recognizing the social importance of skin, we show visual design patterns to customize functional touch sensors and allow for a visually aesthetic appearance. Taken together, these contributions enable new types of on-body devices. This includes finger-worn devices, extensions to conventional wearable devices, and touch input stickers, all fostering direct, quick, and discreet input for mobile computing.

Skip Supplemental Material Section

Supplemental Material

p2991-weigel.mp4

mp4

138.7 MB

References

  1. Chan, L., Liang, R.-H., Tsai, M.-C., Cheng, K.-Y., Su, C.-H., Chen, M., Cheng, W.-H., and Chen, B.-Y. FingerPad: Private and Subtle Interaction Using Fingertips. In ACM UIST '13 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Davison, B. Techniques for Robust Touch Sensing Design. http://ww1.microchip.com/downloads/en/ AppNotes/00001334B.pdf. Accessed: 2015-01-01.Google ScholarGoogle Scholar
  3. Dezfuli, N., Khalilbeigi, M., Huber, J., Müller, F., and Mühlhäuser, M. PalmRC: Imaginary Palm-based Remote Control for Eyes-free Television Interaction. In EuroiTV '12 (2012), 27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Gong, N.-W., Steimle, J., Olberding, S., Hodges, S., Gillian, N. E., Kawahara, Y., and Paradiso, J. A. PrintSense: A Versatile Sensing Technique to Support Multimodal Flexible Surface Interaction. In ACM CHI '14 (2014), 1407--1410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Gong, N.-W., Zhao, N., and Paradiso, J. A. A Customizable Sensate Surface for Music Control. 417--420.Google ScholarGoogle Scholar
  6. Gustafson, S. G., Rabe, B., and Baudisch, P. M. Understanding palm-based imaginary interfaces. In ACM CHI '13 (2013), 889. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hammock, M. L., Chortos, A., Tee, B. C.-K., Tok, J. B.-H., and Bao, Z. 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress. Advanced Materials 25, 42 (2013), 5997--6038.Google ScholarGoogle ScholarCross RefCross Ref
  8. Harrison, C., Benko, H., and Wilson, A. D. OmniTouch: Wearable Multitouch Interaction Everywhere. In ACM UIST '11 (2011), 441. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Harrison, C., Ramamurthy, S., and Hudson, S. E. On-body Interaction: Armed and Dangerous. In ACM TEI '12 (2012), 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Harrison, C., Tan, D., and Morris, D. Skinput: Appropriating the Body As an Input Surface. Communications of the ACM 54, 8 (2011), 111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hawkes, E., An, B., Benbernou, N. M., Tanaka, H., Kim, S., Demaine, E. D., Rus, D., and Wood, R. J. Programmable matter by folding. In PNAS 107, 28 (2010), 12441--12445.Google ScholarGoogle ScholarCross RefCross Ref
  12. Holz, C., Grossman, T., Fitzmaurice, G., and Agur, A. Implanted user interfaces. In ACM CHI '12 (2012), 503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Karrer, T., Wittenhagen, M., Lichtschlag, L., Heller, F., and Borchers, J. Pinstripe: Eyes-free Continuous Input Anywhere on Interactive Clothing. In ACM CHI '11 (2011), 1313.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kim, D.-H., et al. Epidermal Electronics. Science 333, 6044 (2011), 838--843.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kramer, R., Majidi, C., and Wood, R. Wearable tactile keypad with stretchable artificial skin. In IEEE ICRA '11 (2011), 1103--1107.Google ScholarGoogle ScholarCross RefCross Ref
  16. Lissermann, R., Huber, J., Hadjakos, A., and Mühlhäuser, M. EarPut: Augmenting Behind-the-ear Devices for Ear-based Interaction. In ACM CHI EA '13 (2013), 1323--1328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lu, T., Finkenauer, L., Wissman, J., and Majidi, C. Rapid Prototyping for Soft-Matter Electronics. Advanced Functional Materials (2014).Google ScholarGoogle Scholar
  18. Lumelsky, V. J., Shur, M., and Wagner, S. Sensitive skin. IEEE Sensors Journal (2001), 41--51.Google ScholarGoogle ScholarCross RefCross Ref
  19. McCann, J., Hurford, R., and Martin, A. A Design Process for the Development of Innovative Smart Clothing That Addresses End-User Needs from Technical, Functional, Aesthetic and Cultural View Points. In IEEE ISWC '05 (2005), 70--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mistry, P., Maes, P., and Chang, L. WUW - wear Ur world. In ACM CHI EA '09 (2009), 4111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Nakatsuma, K., Shinoda, H., Makino, Y., Sato, K., and Maeno, T. Touch Interface on Back of the Hand. In ACM SIGGRAPH '11 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Niu, X., Peng, S., Liu, L., Wen, W., and Sheng, P. Characterizing and Patterning of PDMS-Based Conducting Composites. Advanced Materials 19, 18 (2007), 2682--2686.Google ScholarGoogle Scholar
  23. Ogata, M., Sugiura, Y., Makino, Y., Inami, M., and Imai, M. SenSkin: Adapting Skin as a Soft Interface. In ACM UIST '13 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ogata, M., Sugiura, Y., Osawa, H., and Imai, M. iRing: Intelligent Ring Using Infrared Reflection. In ACM UIST '12 (2012), 131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Olberding, S., Wessely, M., and Steimle, J. PrintScreen: Fabricating Highly Customizable Thin-film Touch-displays. In ACM UIST '14 (2014), 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Olberding, S., Yeo, K. P., Nanayakkara, S., and Steimle, J. AugmentedForearm: Exploring the Design Space of a Display-enhanced Forearm. In AH '13 (2013), 9--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Perrault, S. T., Lecolinet, E., Eagan, J., and Guiard, Y. Watchit: Simple gestures and eyes-free interaction for wristwatches and bracelets. In ACM CHI '13 (2013), 1451--1460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Rendl, C., Greindl, P., Haller, M., Zirkl, M., Stadlober, B., and Hartmann, P. PyzoFlex: Printed Piezoelectric Pressure Sensing Foil. In ACM UIST '12 (2012), 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rosenberg, I. D., Grau, A., Hendee, C., Awad, N., and Perlin, K. IMPAD: An Inexpensive Multi-touch pressure Acquisition Device. In ACM CHI EA '09 (2009), 3217--3222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sekitani, T., Kaltenbrunner, M., Yokota, T., and Someya, T. Imperceptible Electronic Skin. SID Information Display 30, 1 (2014), 20--25.Google ScholarGoogle Scholar
  31. Serrano, M., Ens, B. M., and Irani, P. P. Exploring the Use of Hand-To-Face Input for Interacting with Head-Worn Displays. In ACM CHI'14 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Someya, T. Stretchable Electronics. Wiley-VCH, 2013.Google ScholarGoogle Scholar
  33. Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. In PNAS 101, 27 (2004), 9966--9970.Google ScholarGoogle ScholarCross RefCross Ref
  34. Su, C.-H., Chan, L., Weng, C.-T., Liang, R.-H., Cheng, K.-Y., and Chen, B.-Y. NailDisplay: Bringing an Always Available Visual Display to Fingertips. In ACM CHI '13 (2013), 1461--1464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sugiura, Y., Inami, M., and Igarashi, T. A Thin Stretchable Interface for Tangential Force Measurement. In ACM UIST '12 (2012), 529--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tamaki, E., Miyak, T., and Rekimoto, J. BrainyHand:: A Wearable Computing Device Without HMD and It's Interaction Techniques. In AVI '10 (2010), 387--388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Vega, K., and Fuks, H. Beauty Technology: Muscle Based Computing Interaction. In ACM ITS '13 (2013), 469--474. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wagner, J., Nancel, M., Gustafson, S. G., Huot, S., and Mackay, W. E. Body-centric design space for multi-surface interaction. In ACM CHI '13 (2013), 1299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Webb, R. C., Bonifas, A. P., Behnaz, A., Zhang, Y., Yu, K. J., Shi, H. C. M., Bian, Z., Liu, Z., Kim, Y.-S., Yeo, W.-H., Park, J. S., Song, J., Li, Y., Huang, Y., Gorbach, A. M., and Rogers, J. A. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature Materials 12 (2013), 938944.Google ScholarGoogle Scholar
  40. Weigel, M., Mehta, V., and Steimle, J. More Than Touch: Understanding How People Use Skin As an Input Surface for Mobile Computing. In ACM CHI '14 (2014), 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Windmiller, J. R., and Wang, J. Wearable Electrochemical Sensors and Biosensors: A Review. In Electroanalysis (2013).Google ScholarGoogle ScholarCross RefCross Ref
  42. Woo, S.-J., Kong, J.-H., Kim, D.-G., and Kim, J.-M. A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors. J. Mater. Chem. C 2 (2014), 4415--4422.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. iSkin: Flexible, Stretchable and Visually Customizable On-Body Touch Sensors for Mobile Computing

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '15: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems
      April 2015
      4290 pages
      ISBN:9781450331456
      DOI:10.1145/2702123

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 18 April 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '15 Paper Acceptance Rate486of2,120submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader