Skip to main content

PetaFLOP Molecular Dynamics for Engineering Applications

  • Conference paper
  • First Online:
  • 896 Accesses

Abstract

Molecular dynamics (MD) simulations enable the investigation of multicomponent and multiphase processes relevant to engineering applications, such as droplet coalescence or bubble formation. These scenarios require the simulation of ensembles containing a large number of molecules. We present recent advances within the MD framework ls1 mardyn which is being developed with particular regard to this class of problems. We discuss several OpenMP schemes that deliver optimal performance at node-level. We have further introduced nonblocking communication and communication hiding for global collective operations. Together with revised data structures and vectorization, these improvements unleash PetaFLOP performance and enable multi-trillion atom simulations on the HLRS supercomputer Hazel Hen. We further present preliminary results achieved for droplet coalescence scenarios at a smaller scale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    www.gromacs.org.

  2. 2.

    www.lammps.org.

  3. 3.

    http://www.ks.uiuc.edu/Research/namd/.

  4. 4.

    Molecules that consist of several interaction sites, e.g. two LJ sites.

References

  1. M. Abraham, T. Murtola, R. Schulz, S. Páll, J. Smith, B. Hess, E. Lindahl, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015)

    Article  Google Scholar 

  2. W. Brown, P. Wang, S. Plimpton, A. Tharrington, Implementing molecular dynamics on hybrid high performance computers—short range forces. Comput. Phys. Commun. 182(4), 898–911 (2011)

    Article  Google Scholar 

  3. W. Eckhardt, Efficient HPC implementations for large-scale molecular simulation in process engineering. Dissertation, Dr. Hut, Munich, 2014

    Google Scholar 

  4. W. Eckhardt, A. Heinecke, An efficient vectorization of linked-cell particle simulations, in ACM International Conference on Computing Frontiers, ACM, New York, NY, USA, pp. 241–243 (2012)

    Google Scholar 

  5. W. Eckhardt, A. Heinecke, R. Bader, M. Brehm, N. Hammer, H. Huber, H.G. Kleinhenz, J. Vrabec, H. Hasse, M. Horsch, M. Bernreuther, C. Glass, C. Niethammer, A. Bode, H.J. Bungartz, 591 TFLOPS multi-trillion particles simulation on superMUC (Springer, Berlin, Heidelberg, 2013), pp. 1–12

    Google Scholar 

  6. W. Eckhardt, T. Neckel, Memory-efficient implementation of a rigid-body molecular dynamics simulation, in Proceedings of the 11th International Symposium on Parallel and Distributed Computing—ISPDC 2012 (Munich, 2012). IEEE, pp. 103–110

    Google Scholar 

  7. C. Gray, K. Gubbins, Theory of Molecular Fluids: I: Fundamentals, in International Series of Monogr, vol.1 (Oxford University Press, Oxford, 1984)

    Google Scholar 

  8. S. Grottel, M. Krone, C. Müller, G. Reina, T. Ertl, MegaMol—a prototyping framework for particle-based visualization. IEEE Trans. Vis. Comput. Graph. 21(2), 201–214 (2015)

    Article  Google Scholar 

  9. C. Hu, X. Wang, J. Li, X. He, S. Li, Y. Feng, S. Yang, H. Bai, Kernel optimization for short-range molecular dynamics. Comput. Phys. Commun. 211, 31–40 (2017)

    Article  Google Scholar 

  10. A. Köster, T. Jiang, G. Rutkai, C. Glass, J. Vrabec, Automatized determination of fundamental equations of state based on molecular simulations in the cloud. Fluid Phase Equilibria 425, 84–92 (2016)

    Article  Google Scholar 

  11. K. Langenbach, M. Heilig, M. Horsch, H. Hasse, Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory. J. Chem. Phys. 148(124702) (2018)

    Article  Google Scholar 

  12. G. Nagayama, P. Cheng, Effects of interface wettability on microscale flow by molecular dynamics simulation. Int. J. Heat Mass Transf. 47, 501–513 (2004)

    Article  Google Scholar 

  13. C. Niethammer, S. Becker, M. Bernreuther, M. Buchholz, W. Eckhardt, A. Heinecke, S. Werth, H.J. Bungartz, C. Glass, H. Hasse, J. Vrabec, M. Horsch, ls1 mardyn: the massively parallel molecular dynamics code for large systems. J. Chem. Theory Comput. 10(10), 4455–4464 (2014)

    Article  Google Scholar 

  14. S. Páll, B. Hess, A flexible algorithm for calculating pair interactions on SIMD architectures. Comput. Phys. Commun. 184(12), 2641–2650 (2013)

    Article  Google Scholar 

  15. D. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  16. L. Rekvig, D. Frenkel, Molecular simulations of droplet coalescence in oil/water/surfactant systems. J. Chem. Phys. 127(134701) (2007)

    Article  Google Scholar 

  17. S. Seckler, N. Tchipev, H.J. Bungartz, P. Neumann, Load balancing for molecular dynamics simulations on heterogeneous architectures, in 2016 IEEE 23rd International Conference on High Performance Computing (HiPC), pp. 101–110 (2016)

    Google Scholar 

  18. N. Tchipev, S. Seckler, M. Heinen, J. Vrabec, F. Gratl, M. Horsch, M. Bernreuther, C. Glass, C. Niethammer, N. Hammer, B. Krischok, M. Resch, D. Kranzlmüller, H. Hasse, H.J. Bungartz, P. Neumann, TeTRiS: twenty trillion-atom simulation. Int. J. High Perform. Comput. Appl. (2019), https://doi.org/10.1177%2F1094342018819741

  19. N. Tchipev, A. Wafai, C. Glass, W. Eckhardt, A. Heinecke, H.J. Bungartz, P. Neumann, Optimized Force Calculation in Molecular Dynamics Simulations for the Intel Xeon Phi (Springer International Publishing, Cham, 2015), pp. 774–785)

    Chapter  Google Scholar 

  20. J. Vrabec, M. Bernreuther, H.J. Bungartz, W.L. Chen, W. Cordes, R. Fingerhut, C. Glass, J. Gmehling, R. Hamburger, M. Heilig, M. Heinen, M. Horsch, C.M. Hsieh, M. Hülsmann, P. Jäger, P. Klein, S. Knauer, T. Köddermann, A. Köster, K. Langenbach, S.T. Lin, P. Neumann, J. Rarey, D. Reith, G. Rutkai, M. Schappals, M. Schenk, A. Schedemann, M. Schönherr, S. Seckler, S. Stephan, K. Stöbener, N. Tchipev, A. Wafai, S. Werth, H. Hasse, Skasim—Scalable hpc software for molecular simulation in the chemical industry. Chem. Ing. Tech. 90(3), 295–306 (2018)

    Article  Google Scholar 

  21. X. Wang, J. Li, J. Wang, X. He, N. Nie, Kernel Optimization on Short-Range Potentials Computations in Molecular Dynamics Simulations (Springer, Singapore, 2016), pp. 269–281

    Google Scholar 

Download references

Acknowledgements

The presented work was carried out in the scope of the Large-Scale Project Extreme-Scale Molecular Dynamics Simulation of Droplet Coalescence, acronym GCS-MDDC, of the Gauss Centre for Supercomputing; the authors thank Bernd Krischok, Dr.-Ing. Martin Bernreuther and Prof. Dr. Michael Resch for their support throughout the project. Financial support by the Federal Ministry of Education and Research, project Task-based load balancing and auto-tuning in particle simulations (TaLPas), grant numbers 01IH16008A/B/E, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neumann, P., Tchipev, N., Seckler, S., Heinen, M., Vrabec, J., Bungartz, HJ. (2019). PetaFLOP Molecular Dynamics for Engineering Applications. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 18. Springer, Cham. https://doi.org/10.1007/978-3-030-13325-2_25

Download citation

Publish with us

Policies and ethics