Skip to main content
Log in

pH Effect on Two-Photon Cross Section of Highly Fluorescent Dyes Using Femtosecond Two-Photon Induced Fluorescence

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Effect of solution pH on two-photon absorption cross-section of highly fluorescent Coumarin and Rhodamine dyes with high repetition rate femtosecond laser pulses at 780 nm is presented using two-photon induced fluorescence technique. A correspondence in the measured two-photon and single-photon cross-section values is seen when the pH changes from acidic to basic conditions (pH = 2–10) for solutions in 1:1 water-ethanol binary mixture. By plotting changes in the single-photon and two-photon fluorescence in this pH range, the excited state pKa values are found. The ground state pKa values are also affected by the protonation deprotonation equilibrium as a result of variation in pH from acidic to basic, which are characterized by changes in absorbance spectra. Most of these single-photon and two-photon induced fluorescence spectra show characteristic blue shifts. Different fluorescence quantum yields calculated at each pH reflect a change in structure corresponding to their associated properties as a result of acid base equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Göppert-Mayer M (1931) Elementary processes with two quantum transitions. Ann Phys 9(401):273–294

    Article  Google Scholar 

  2. Kaiser W, Garrett C (1961) Two-photon excitation in CaF2: Eu2+. Phys Rev Lett 7:229–231

    Article  CAS  Google Scholar 

  3. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  CAS  PubMed  Google Scholar 

  4. Piston DW, Masters BR, Webb WW (1995) Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy. J Microsc 178:20–27

    Article  CAS  PubMed  Google Scholar 

  5. Xu C, Zipfel W, Shear JB, Williams RM, Webb WW (1996) Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci 93:10763–10768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sheppard C, Gu M (1990) Image formation in two-photon fluorescence microcopy. Optik (Stuttg) 86(3):104–106

    CAS  Google Scholar 

  7. Wei P, Tan OF, Zhu Y, Duan GH (2007) Axial superresolution of two-photon microfabrication. Appl Opt 46(18):3694–3699

    Article  CAS  PubMed  Google Scholar 

  8. Leatherdale CA, DeVoe RJ (2003) Two-photon microfabrication using two-component photoinitiation systems: effect of photosensitizer and acceptor concentrations. Proc SPIE 5211:112–123

    Article  CAS  Google Scholar 

  9. Teh WH, Dürig U, Salis G, Harbers R, Drechsler U, Mahrt RF, Smith CG, Güntherodt H-J (2004) SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication. Appl Phys Lett 84:4095–4097

    Article  CAS  Google Scholar 

  10. Mendonca CR, Cerami LR, Shih T, Tilghman RW, Baldacchini T, Mazur E (2008) Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores. Opt Express 16(1):200–206

    Article  CAS  PubMed  Google Scholar 

  11. Correa DS, Cardoso MR, Tribuzi V, Misoguti L, Mendonca CR (2012) Femtosecond laser in polymeric materials: microfabrication of doped structures and micromachining. IEEE J Sel Top Quantum Electron 18(1):176–186

    Article  CAS  Google Scholar 

  12. He GS, Gvishi R, Prasad PN, Reinhardt BA (1995) Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials. Opt Commun 117:133–136

    Article  CAS  Google Scholar 

  13. He GS, Xu GC, Prasad PN, Reinhardt BA, Bhatt JC, Dillard AG (1995) Two-photon absorption and optical-limiting properties of novel organic compounds. Opt Lett 20(5):435–437

    Article  CAS  PubMed  Google Scholar 

  14. He GS, Bhawalkar JD, Zhao CF, Prasad PN (1995) Optical limiting effect in a two-photon absorption dye doped solid matrix. Appl Phys Lett 67:2433–2435

    Article  CAS  Google Scholar 

  15. Zhao PD, Chen P, Tang GQ, Zhang GL, Chen WJ (2004) Two-photon spectroscopic properties of a new chlorin derivative photosensitizer. Chem Phys Lett 390:41–44

    Article  CAS  Google Scholar 

  16. Fisher WG, Partridge WP, Dees C, Wachter EA (1997) Simultaneous two-photon activation of type-I photodynamic therapy agents. Photochem Photobiol 66:141–155

    Article  CAS  PubMed  Google Scholar 

  17. Tsiminis G, Ribierre J-C, Ruseckas A, Barcena HS, Richards GJ, Turnbull GA, Burn PL, Samuel IDW (2008) Two-photon absorption and lasing in first-generation bisfluorene dendrimers. Adv Mater 20:1940–1944

    Article  CAS  Google Scholar 

  18. Albota M, Beljonne D, Brédas JL, Ehrlich JE, Fu JY, Heikal AA, Hess SE, Kogej T, Levin MD, Marder SR, McCord-Maughon D, Perry JW, Röckel H, Rumi M, Subramaniam G, Webb WW, Wu XL, Xu C (1998) Design of organic molecules with large two-photon absorption cross sections. Science 281:1653–1656

    Article  CAS  PubMed  Google Scholar 

  19. Kogej T, Beljonne D, Meyers F, Perry JW, Marder SR, Brédas JL (1998) Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores. Chem Phys Lett 298:1–6

    Article  CAS  Google Scholar 

  20. Cho BR, Son KH, Lee SH, Song Y-S, Lee Y-K, Jeon S-J, Choi JH, Lee H, Cho M (2001) Two photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene derivatives. J Am Chem Soc 123:10039–10045

    Article  CAS  PubMed  Google Scholar 

  21. Kannan R, He GS, Lin TC, Prasad PN, Vaia RA, Tan LS (2004) Toward highly active two-photon absorbing liquids. Synthesis and characterization of 1,3,5-triazine-based octupolar molecules. Chem Mater 16:185–194

    Article  CAS  Google Scholar 

  22. Beljonne D, Wenseleers W, Zojer E, Shuai Z, Vogel H, Pond SJK, Perry JW, Marder SR, Brédas JL (2002) Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds. Adv Funct Mater 12:631–641

    Article  CAS  Google Scholar 

  23. Chung S-J, Kim K-S, Lin T-C, He GS, Swiatkiewicz J, Prasad PN (1999) Cooperative enhancement of two-photon absorption in multi-branched structures. J Phys Chem B 103:10741–10745

    Article  CAS  Google Scholar 

  24. Bhaskar A, Ramakrishna G, Lu Z, Twieg R, Hales JM, Hagan DJ, Van Stryland E, Goodson T (2006) Investigation of two-photon absorption properties in branched alkene and alkyne chromophores. J Am Chem Soc 128:11840–11849

    Article  CAS  PubMed  Google Scholar 

  25. Kim HM, Cho BR (2009) Two-photon materials with large two-photon cross sections. Structure–property relationship. Chem Commun:153–164

  26. Drobizhev M, Karotki A, Dzenis Y, Rebane A, Suo Z, Spangler CW (2003) Strong cooperative enhancement of two-photon absorption in dendrimers. J Phys Chem B 107:7540–7543

    Article  CAS  Google Scholar 

  27. Charlot M, Izard N, Mongin O, Riehl D, Blanchard-Desce M (2006) Optical limiting with soluble two-photon absorbing quadrupoles: structure–property relationships. Chem Phys Lett 417:297–302

    Article  CAS  Google Scholar 

  28. Wang C-K, Zhao K, Su Y, Ren Y, Zhao X, Luo Y (2003) Solvent effects on the electronic structure of a newly synthesized two-photon polymerization initiator. J Chem Phys 119:1208–1213

    Article  CAS  Google Scholar 

  29. Luo Y, Norman P, Macak P, Agren H (2000) Solvent-induced two-photon absorption of a push − pull molecule. J Phys Chem A 104:4718–4722

    Article  CAS  Google Scholar 

  30. Kim HM, Lee YO, Lim CS, Kim JS, Cho BR (2008) Two-photon absorption properties of alkynyl-conjugated pyrene derivatives. J Org Chem 73:5127–5130

    Article  CAS  PubMed  Google Scholar 

  31. De Boni L, Misoguti L, Zílio SC, Mendonça CR (2005) Degenerate two-photon absorption spectra in azoaromatic compounds. Chem Phys Chem 6:1121–1125

    CAS  PubMed  Google Scholar 

  32. Varnavski O, Yan X, Mongin O, Blanchard-Desce M, Goodson T (2007) Strongly interacting organic conjugated dendrimers with enhanced two-photon absorption. J Phys Chem C 111:149–162

    Article  CAS  Google Scholar 

  33. Frediani L, Rinkevicius Z, Agren H (2005) Two-photon absorption in solution by means of time-dependent density-functional theory and the polarizable continuum model. J Chem Phys 122:244104

    Article  PubMed  Google Scholar 

  34. Woo HY, Liu B, Kohler B, Korystov D, Mikhailovsky A, Bazan GC (2005) Solvent effects on the two-photon absorption of distyrylbenzene chromophores. J Am Chem Soc 127:14721–14729

    Article  CAS  PubMed  Google Scholar 

  35. Fitilis I, Fakis M, Polyzos I, Giannetas V, Persephonis P, Vellis P, Mikroyannidis J (2007) A two-photon absorption study of fluorene and carbazole derivatives. The role of the central core and the solvent polarity. Chem Phys Lett 447:300–304

    Article  CAS  Google Scholar 

  36. Yan Y, Li B, Liu K, Dong Z, Wang X, Qian S (2007) Enhanced two-photon absorption and ultrafast dynamics of a new multibranched chromophore with a dibenzothiophene core. J Phys Chem A 111:4188–4194

    Article  CAS  PubMed  Google Scholar 

  37. Zhou Y, Miao Q, Sun Y-P, Gel’mukhanov F, Wang C-K (2011) Solvent effect on dynamical TPA and optical limiting of BDMAS molecular media for nanosecond and femtosecond laser pulses. J Phys B Atomic Mol Phys 44:35103

    Article  Google Scholar 

  38. Wielgus M, Bartkowiak W, Samoc M (2012) Two-photon solvatochromism. I. Solvent effects on two-photon absorption cross section of 4-dimethylamino-4′-nitrostilbene (DANS). Chem Phys Lett 554:113–116

    Article  CAS  Google Scholar 

  39. Alam MM, Chattopadhyaya M, Chakrabarti S, Ruud K (2012) High-polarity solvents decreasing the two-photon transition probability of through-space charge-transfer systems - a surprising in silico observation. J Phys Chem Lett 3:961–966

    Article  CAS  PubMed  Google Scholar 

  40. Murugan NA, Chakrabarti S, Ågren H (2011) Solvent dependence of structure, charge distribution and absorption spectrum in the photochromic merocyanine- spiropyran pair. J Phys Chem B 115:4025–4032

    Article  CAS  PubMed  Google Scholar 

  41. Leng W, Bazan GC, Kelley AM (2009) Solvent effects on resonance Raman and hyper-Raman scatterings for a centrosymmetric distyrylbenzene and relationship to two-photon absorption. J Chem Phys 130:044501

    Article  PubMed  Google Scholar 

  42. Rumi M, Perry JW (2010) Two-photon absorption: an overview of measurements and principles. Adv Opt Photon 2:451

    Article  CAS  Google Scholar 

  43. Xu C, Webb WW (1997) Top Fluoresc Spectrosc. In: Lakowicz JR (ed) Plenum Press, New York, 5:471–540

  44. Sutherland RL (2003) Handbook of nonlinear optics, 2nd Ed. CRC Press, Boca Raton, FL, USA

  45. Yang H, Zhuang YM, Hu H, Du XX, Zhang CX, Shi XY, Wu HX, Yang SP (2010) Silica-coated manganese oxide nanoparticles as a platform for targeted magnetic resonance and fluorescence imaging of cancer cells. Adv Funct Mater 20:1733–1741

    Article  CAS  Google Scholar 

  46. Zhou K, Wang Y, Huang X, Luby-Phelps K, Sumer BD, Gao J (2011) Tunable ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew Chem Int Ed 50:6109–6114

    Article  CAS  Google Scholar 

  47. Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T (2011) Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer. ACS Chem Biol 6:600–608

    Article  CAS  PubMed  Google Scholar 

  48. Li Z, Wu S, Han J, Han S (2011) Imaging of intracellular acidic compartments with a sensitive rhodamine based fluorogenic pH sensor. Analyst 136:3698–3706

    Article  CAS  PubMed  Google Scholar 

  49. Yuan L, Lin W, Feng Y (2011) A rational approach to tuning the pKa values of rhodamines for living cell fluorescence imaging. Org Biomol Chem 9:1723–1726

    Article  CAS  PubMed  Google Scholar 

  50. Slavik J (1994) Fluorescent probes in cellular and molecular biology. CRC-Press, Boca Raton, FL, USA

  51. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358

    Article  CAS  Google Scholar 

  52. Lakowicz J R (2006) Principles of fluorescence spectroscopy, 3rd edition, Springer, New York

  53. Batistela VR, Pellosi DS, de Souza FD, da Costa WF, de Oliveira SSM, de Souza VR, Caetano W, de Oliveira HPM, Scarminio IS, Hioka N (2011) pKa determinations of xanthene derivates in aqueous solutions by multivariate analysis applied to UV–Vis spectrophotometric data. Spectrochim Acta A Mol Biomol Spectrosc 79:889–897

    Article  CAS  PubMed  Google Scholar 

  54. Pandey MM, Jaipal A, Kumar A, Malik R, Charde SY (2013) Determination of pKa of felodipine using UV-visible spectroscopy. Spectrochim Acta A 115:887–890

    Article  CAS  Google Scholar 

  55. Best QA, Xu R, McCarroll ME, Wang L, Dyer DJ (2010) Design and investigation of a series of rhodamine-based fluorescent probes for optical measurements of pH. Org Lett 12:3219–3221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vasylevska AS, Karasyov AA, Borisov SM, Krause C (2007) Novel coumarin-based fluorescent pH indicators, probes and membranes covering a broad pH range. Anal Bioanal Chem 387:2131–2141

    Article  CAS  PubMed  Google Scholar 

  57. Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B 13:481–491

    Article  CAS  Google Scholar 

  58. Wakebe T, Keuren EV (1999) The excitation spectra of two-photon induced fluorescence in xanthene dyes. Jpn J Appl Phys 38:3556–3561

    Article  CAS  Google Scholar 

  59. Arbeloa FL, Arbeloa TL, Estévez MJT, Arbeloa IL (1991) Photophysics of rhodamines: molecular structure and solvent effects. J Phys Chem 95:2203–2208

    Article  Google Scholar 

  60. Karton-Lifshin N, Presiado I, Erez Y, Gepshtein R, Shabat D, Huppert D (2012) Ultrafast excited-state intermolecular proton transfer of cyanine fluorochrome dyes. J Phys Chem A 116:85–92

    Article  CAS  PubMed  Google Scholar 

  61. Jones G, Jimenez JAC (2001) Azole-linked coumarin dyes as fluorescence probes of domain-forming polymers. J Photochem Photobiol B Biol 65:5–12

    Article  CAS  Google Scholar 

  62. Druzhinin SI, Bursulaya BD, Uzhinov BM (1993) Kinetics and mechanism of photoprotonation of coumarin-102 by sulfuric acid in ethanol. J Appl Spectrosc 59:653–658

    Article  Google Scholar 

  63. Albert A, Serjeant EP (1962) Ionisation constants of acids and bases. Methuen & Co Ltd., London

  64. Singh S, Sharda N, Mahajan L (1999) Spectrophotometric determination of pKa of nimesulide. Int J Pharma 176:261–264

    Article  CAS  Google Scholar 

  65. Batistela VR, Pellosi DS, de Souzaa FD, da Costa WF, de O Santin SM, de Souzaa VR, Caetano W, de Oliveira HPM, Scarminio IS, Hioka N (2011) pKa determinations of xanthene derivates in aqueous solutions by multivariate analysis applied to UV–Vis spectrophotometric data. Spectrochim Acta A 79:889–897

    Article  CAS  Google Scholar 

  66. Batistela VR, Cedran JC, Oliveira HPM, Scarmino IS, Ueno LT, Machado AEH, Hioka N (2010) Protolytic fluorescein species evaluated using chemometry and DFT studies. Dyes Pigments 86:15–24

    Article  CAS  Google Scholar 

  67. Baki CN, Akkaya EU (2001) Boradiazaindacene- appended calix[4]arene: fluorescence sensing of pH near neutrality. J Org Chem 66:1512–1513

    Article  CAS  PubMed  Google Scholar 

  68. Saleh N, Rawashdeh AMM, Yousef YA, Al-Soud YA (2007) Structural charecterization of new Cd2+ fluorescent sensor based on lumazine ligand: AM1 and ab initio studies. Spectrochim Acta A 68:728–733

    Article  Google Scholar 

  69. Pazos IM, Ahmed IA, Berrios MIL, Gai F (2015) Sensing pH via p-cyanophenylalanine fluorescence: application to determine peptide pKa and membrane penetration kinetics. Anal Biochem 483:21–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Callis PR (1997) Two photon induced fluorescence. Ann Rev Phys Chem 48:271–297

    Article  CAS  Google Scholar 

  71. Makarov NS, Drobizhev M, Rebane A (2008) Two-photon absorption standards in the 550–1600 nm excitation wavelength range. Opt Express 16:4029–4047

    Article  CAS  PubMed  Google Scholar 

  72. Beija M, Afonso CAM, Martinho JMG (2009) Synthesis and applications of rhodamine derivatives as fluorescent probes. Chem Soc Rev 38:2410–2433

    Article  CAS  PubMed  Google Scholar 

  73. Kelley A M (2012) Condensed-phase molecular spectroscopy and Photophysics. John Wiley & Sons, Inc., Hoboken, NJ, USA. doi:10.1002/9781118493052.ch8

  74. Guthmuller J, Champagne B (2008) Resonance Raman scattering of rhodamine 6G as calculated by time-dependent density functional theory: vibronic and solvent effects. J Phys Chem A 112:3215–3223

    Article  CAS  PubMed  Google Scholar 

  75. Heimel G, Daghofer M, Gierschner J, List EJW, Grimsdale AC, Müllen K, Beljonne D, Brédas J-L, Zojer E (2005) Breakdown of the mirror image symmetry in the optical absorption/emission spectra of oligo(Para-phenylene)s. J Chem Phys 122:54501

    Article  PubMed  Google Scholar 

  76. Grabowski Z (2003) R, Rotkiewicz K, Rettig W, structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4031

    Article  PubMed  Google Scholar 

  77. Dash N, Chipem FAS, Swaminathan R, Krishnamoorthy G (2008) Hydrogen bond induced twisted intramolecular charge transfer in 2-(4′-N,N-dimethylaminophenyl)imidazo[4,5-b]pyridine. Chem Phys Lett 460:119–124

    Article  CAS  Google Scholar 

  78. Soujanya T, Fessenden RW, Samanta A (1996) Role of nonfluorescent twisted intramolecular charge transfer state on the photophysical behavior of aminophthalimide dyes. J Phys Chem 100:3507–3512

    Article  CAS  Google Scholar 

  79. Stsiapura VI, Maskevich AA, Kuzmitsky VA, Turoverov KK, Kuznetsova IM (2007) Computational study of Thioflavin T torsional relaxation in the excited state. J Phys Chem A 111:4829–4835

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

DG thanks MHRD, DST and ISRO (Govt. of India) for funding. KM thanks UGC Govt. of India for Graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Goswami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhal, K., Goswami, D. pH Effect on Two-Photon Cross Section of Highly Fluorescent Dyes Using Femtosecond Two-Photon Induced Fluorescence. J Fluoresc 27, 339–356 (2017). https://doi.org/10.1007/s10895-016-1963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1963-4

Keywords

Navigation